176 research outputs found
Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments
Crystal scintillators provide potential merits for the pursuit of low-energy
low-background experiments. A CsI(Tl) scintillating crystal detector is being
constructed to study low-energy neutrino physics at a nuclear reactor, while
projects are underway to adopt this technique for dark matter searches. The
choice of the geometrical parameters of the crystal modules, as well as the
optimization of the read-out scheme, are the results of an R&D program.
Crystals with 40 cm in length were developed. The detector requirements and the
achieved performance of the prototypes are presented. Future prospects for this
technique are discussed.Comment: 32 pages, 14 figure
Varying Contents of Sources Affect Tectonic-Setting Discrimination of Sediments: A Case Study from Permian Sandstones in the Eastern Tianshan, Northwestern China
This article reports new geochemical data from Permian sandstones, most probably deposited during a period of postcollisional extension, from the Yamansu, Shaquanzi, and Xingxingxia areas in the Eastern Tianshan, northwestern China, to determine and characterize their provenance and source nature. The medium- to coarse-grained sandstones are composed mainly of angular to subangular quartz and volcanic fragments, with minor plagioclase and/or microcline, suggesting proximal deposition. Although the samples show relatively large variations in SiO2 (59.7–70.8 wt%), Al2O3 (9.0–14.9 wt%), and Fe2O3T + MgO (2.3–5.2 wt%) contents, they yield low chemical index of alteration values (41–55) but high index of compositional variability values (1.06–1.78), suggestive of their derivation mainly from compositionally immature sources with weak chemical weathering. Their relatively low Zr concentrations (99–225 ppm) and GdN/YbN ratios (1.20–1.53) manifest insignificant zircon and monazite enrichments. Most of the samples are characterized by upper continental crust–like rare earth element (REE) patterns with δEu values of 0.63–0.99, reflecting dominant contributions from intermediate to felsic rocks. In particular, the Xingxingxia and Shaquanzi samples have relatively low SiO2/Al2O3 (4.51–5.82) and Th/U (2.67–3.77) ratios but high ∑REE (total REE) contents (71.8–141.1 ppm), indicative of a low degree of sedimentary sorting/recycling, whereas the Yamansu samples have higher SiO2/Al2O3 (6.30–6.57) and Th/U (3.93–5.16) ratios but low ∑REE contents (77.1–86.8 ppm), probably indicative of a higher degree of sedimentary recycling or more involvement of recycled materials. Tectonic-setting discrimination using geochemical data from the samples yielded inconsistent results, with the Xingxingxia and Shaquanzi samples dominantly plotted in or adjacent to the active continental margin or continental island arc field, while the Yamansu samples mostly plotted in or adjacent to the passive margin field. Combining our findings with those of previous detrital zircon studies, we suggest that the inconsistent tectonic discriminations of the Permian sandstones most likely resulted from their receiving different proportions of source rocks that have distinct geochemical compositions. This study provides ample evidence that the geochemical compositions of sedimentary rocks within a continuous sequence or in the same depositional tectonic setting can vary significantly as a result of changes in contents of different source materials and thus that the use of tectonic-setting discrimination diagrams requires great caution
A CsI(Tl) Scintillating Crystal Detector for the Studies of Low Energy Neutrino Interactions
Scintillating crystal detector may offer some potential advantages in the
low-energy, low-background experiments. A 500 kg CsI(Tl) detector to be placed
near the core of Nuclear Power Station II in Taiwan is being constructed for
the studies of electron-neutrino scatterings and other keV-MeV range neutrino
interactions. The motivations of this detector approach, the physics to be
addressed, the basic experimental design, and the characteristic performance of
prototype modules are described. The expected background channels and their
experimental handles are discussed.Comment: 34 pages, 11 figures, submitted to Nucl. Instrum. Method
Measurements of the observed cross sections for exclusive light hadrons containing at , 3.650 and 3.6648 GeV
By analyzing the data sets of 17.3, 6.5 and 1.0 pb taken,
respectively, at , 3.650 and 3.6648 GeV with the BES-II
detector at the BEPC collider, we measure the observed cross sections for
, , ,
and at the three energy
points. Based on these cross sections we set the upper limits on the observed
cross sections and the branching fractions for decay into these
final states at 90% C.L..Comment: 7 pages, 2 figure
Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV
By analyzing the data sets of 17.3 pb taken at GeV
and 6.5 pb taken at GeV with the BESII detector at the
BEPC collider, we have measured the observed cross sections for 12 exclusive
light hadron final states produced in annihilation at the two energy
points. We have also set the upper limits on the observed cross sections and
the branching fractions for decay to these final states at 90%
C.L.Comment: 8 pages, 5 figur
Partial wave analysis of J/\psi \to \gamma \phi \phi
Using events collected in the BESII detector, the
radiative decay is
studied. The invariant mass distribution exhibits a near-threshold
enhancement that peaks around 2.24 GeV/.
A partial wave analysis shows that the structure is dominated by a
state () with a mass of
GeV/ and a width of GeV/. The
product branching fraction is: .Comment: 11 pages, 4 figures. corrected proof for journa
Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays
By analyzing about 33 data sample collected at and around 3.773
GeV with the BES-II detector at the BEPC collider, we directly measure the
branching fractions for the neutral and charged inclusive semimuonic decays
to be and , and determine the ratio of the two branching
fractions to be
Measurements of psi(2S) decays to octet baryon-antibaryon pairs
With a sample of 14 million psi(2S) events collected by the BESII detector at
the Beijing Electron Positron Collider (BEPC), the decay channels psi(2S)->p
p-bar, Lambda Lambda-bar, Sigma0 Sigma0-bar, Xi Xi-bar are measured, and their
branching ratios are determined to be (3.36+-0.09+-0.24)*10E-4,
(3.39+-0.20+-0.32)*10E-4, (2.35+-0.36+-0.32)*10E-4, (3.03+-0.40+-0.32)*10E-4,
respectively. In the decay psi(2S)->p p-bar, the angular distribution parameter
alpha is determined to be 0.82+-0.17+-0.04.Comment: 8 pages, 8 figure
Observation of the decay \psip\rar\kstark
Using 14 million events collected with the BESII detector,
branching fractions of \psip\rar\kstarkpm and \kstarknn are determined to
be: \calB(\psip\rar\kstarkpm)=(2.9^{+1.3}_{-1.7}\pm0.4)\times 10^{-5} and
\calB(\psip\rar\kstarknn)=(13.3^{+2.4}_{-2.7}\pm1.9)\times 10^{-5}. The
results confirm the violation of the "12%" rule for these two decay channels
with higher precision. A large isospin violation between the charged and
neutral modes is observed.Comment: 5 pages, 3 figure
- …