4 research outputs found

    Sperm whale long-range echolocation sounds revealed by ANTARES, a deep-sea neutrino telescope

    Get PDF
    [EN] Despite dedicated research has been carried out to adequately map the distribution of the sperm whale in the Mediterranean Sea, unlike other regions of the world, the species population status is still presently uncertain. The analysis of two years of continuous acoustic data provided by the ANTARES neutrino telescope revealed the year-round presence of sperm whales in the Ligurian Sea, probably associated with the availability of cephalopods in the region. The presence of the Ligurian Sea sperm whales was demonstrated through the real-time analysis of audio data streamed from a cabled-to- shore deep-sea observatory that allowed the hourly tracking of their long-range echolocation behaviour on the Internet. Interestingly, the same acoustic analysis indicated that the occurrence of surface shipping noise would apparently not condition the foraging behaviour of the sperm whale in the area, since shipping noise was almost always present when sperm whales were acoustically detected. The continuous presence of the sperm whale in the region confirms the ecological value of the Ligurian sea and the importance of ANTARES to help monitoring its ecosystemsThe authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a lenergie atomique et aux energies alternatives (CEA), la Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Economia y Competitividad (MINECO), Prometeo and Grisolia programs of Generalitat Valenciana and MultiDark, Spain; Agence de l'Oriental and CNRST, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilitiesAndre, M.; Caballé, A.; Van Der Schaar, M.; Solsona, A.; Houégnigan, L.; Zaugg, S.; Sanchez, AM.... (2017). Sperm whale long-range echolocation sounds revealed by ANTARES, a deep-sea neutrino telescope. Scientific Reports. 7:1-12. https://doi.org/10.1038/srep45517S1127Aguilar, J. A. et al. ANTARES: the first undersea neutrino telescope. Nucl Inst and Met Phys Res A. 656, 11–38 (2011a).Aguilar, J. A. et al. AMADEUS - The Acoustic Neutrino Detection Test System of the ANTARES Deep-Sea Neutrino Telescope -. Nucl Inst and Met Phys Res A. 626–627, 128–143 (2011b).Ruhl, H. et al. Societal need for improved understanding of climate change, anthropogenic impacts, and geo-hazard warning drive development of ocean observatories in European Seas. Prog Oceanog. 91, 1–33 (2011).Tamburini, C. et al. Deep-sea bioluminescence blooms after dense water formation at the ocean surface. PLoS One. 8(7), e67523. doi: 10.1371/journal.pone.0067523 (2013).Van Haren, H. et al. Acoustic and optical variations during rapid downward motion episodes in the deep North Western Mediterranean. Deep Sea Res I. 58, 875–884 (2011).Van der Graaf, A. J. et al. European Marine Strategy Framework Directive - Good Environmental Status (MSFD GES): Report of the Technical Subgroup on Underwater noise and other forms of energy (2012).Hatch, L. T., Clark, C. W., Van Parijs, S. M., Frankel, A. S. & Ponirakis, D. W. Quantifying Loss of Acoustic Communication Space for Right Whales in and around a U.S. National Marine Sanctuary. Conserv Biol. 26, 983–994 (2012).André, M. et al. Low-frequency sounds induce acoustic trauma in cephalopods. Front. Ecol. Environ. 9, 489–493 (2011).Solé, M. et al. Does exposure to noise from human activities compromise sensory information from cephalopod statocysts? Deep Sea Res. II. 95, 160–181 (2013).Solé, M. et al. Ultrastructural damage of Loligo vulgaris and Illex coindetii statocysts after low frequency sound exposure. PLoS One 8(10), e78825. doi: 10.1371/journal.pone.0078825 (2013).André, M. et al. Listening to the Deep: Live monitoring of ocean noise and cetacean acoustic signals. Mar Pollut Bull. 63, 18–26 (2011).Whitehead, H. Sperm whales: social evolution in the ocean(The University of Chicago Press, Chicaho, 2003).Mohl, B., Wahlberg, M., Madsen, P. T., Heerfordt, A. & Lund, A. The monopulsed nature of sperm whale clicks. J Acous Soc Am. 114, 1143–1154 (2003).André, M., Johansson, T., Delory, E. & van der Schaar, M. Foraging on squid: the sperm whale mid-range sonar. Jour Mar Biol Assoc. 87, 59–67 (2007).Madsen, P., Wahlberg, M. & Møhl, B. Male sperm whale (Physeter macrocephalus) acoustics in a high-latitude habitat: implications for echolocation and communication. Behav Ecol Sociobiol. 53, 31, doi: 10.1007/s00265-002-0548-1 (2002).Gannier, A., Drouot, V. & Goold, J. C. Distribution and relative abundance of sperm whales in the Mediterranean Sea . Mar Ecol Prog Ser. 243, 281–293 (2000).Drouot, V., Gannier, A. & Gould, J. C. Summer social distribution of sperm whales in the Mediterranean Sea. J Mar Biol Ass. 84, 675–680 (2004).Pavan, G. et al. G. Short Term and Long Term Bioacoustic Monitoring of the Marine Environment. Results from NEMO ONDE Experiment and Way Ahead in Computational bioacoustics for assessing biodiversity . Proceedings of the International Expert meeting on IT-based detection of bioacoustical patterns(ed. Frommolt, K. H., Rolf Bardeli, R. & Clausen, M. ) 7–14 (Federal Agency for Nature Conservation, Bonn, 2008).Frantzis, A. et al. Sperm whale presence off South-West Crete, Eastern Mediterranean Sea in Proc. 13th Ann. Conf. ECS. 214–217 (Eur Res Cet, Valencia, 1999).Notarbartolo-Di-Sciara, G. Sperm whales, Physeter macrocephalus, in the Mediterranean Sea: a summary of status, threats, and conservation recommendations. Aquatic Conserv. Mar. Freshw. Ecosyst. 24, 4–10. doi: 10.1002/aqc.2409 (2014).Pace, D. S., Mussi, B., Gordon, J. C. D. & Würtz, M. Ecology, Behaviour and Conservation of Sperm Whale in the Mediterranean Sea in Aquatic Conserv . Mar. Freshw. Ecosyst. 24 (ed. Wiley, J. ) 1–118 (Wiley Online library, 2014).Rendell, L. E. & Frantzis, A. Mediterranean sperm whales, Physeter macrocephalus: the precarious state of a lost tribe In Medit. Mar. Mam. Ecol. Cons. 75 (ed. Notarbartolo di Sciara, G., Podestà, M. P. & Curry, B. E. ) 37–74, doi: 10.1016/bs.amb.2016.08.001 (Advances in Marine Biology, Academic Press/Elsevier, 2016).Di Natale, A. & Notarbartolo di Sciara, G. A review of the passive fishing nets and trap fisheries in the Mediterranean Sea and of the cetacean bycatch In Gillnets and cetaceans(ed. Perrin, W. F., Donovan, G. P. & Barlow, J. ) 189–202 (Rep Int Whal Comm, 1994).Jaquet, N., Whitehead, H. & Lewis, M. Relationship between sperm whale distribution and primary productivity over large spatial scale in the Pacific ocean. Eur Res Cet. 9, 188–192 (1995).Millot, C. Circulation in the Western Mediterranean Sea. Oceanol Acta. 10, 143–150 (1987).Morel, A. & André, J. M. Pigment distribution and primary production in the Western Mediterranean as derived from coastal zone color scanner observations. J Geophy Res. 96, 2685–12698 (1991).Crépon, M., Wald, L. & Monget, J. M. Low-frequency waves in the Ligurian Sea during December 1977. J Geophys Res. 87, 595–600 (1982).Prieur, L. & Sathyendranath, S. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials. Limnol Oceanogr. 26, 671–89 (1981).Kawakami, T. A review of sperm whale food. Sci Rep Whales Res Inst. 32, 199–218 (1980).Roper, C. F. E. & Young, R. E. Vertical distribution of pelagic cephalopods. Smithson Contrib Zool. 209, 1–51 (1975).Matsushita, T. Daily rhythmic activity of the sperm whales in the Antarctic. Bull Jpn Soc Sci Fish. 20, 770–73 (1955).Zaugg, S. et al. Real-time acoustic classification of sperm whale clicks and shipping impulses from deep-sea observatories. Appl Acoust. 71(11), 1011–1019 (2010).Nelder, J. & Wedderburn, R. Generalized linear models. J R Stat Soc. 135, 370–384 (1972)

    On-board underwater glider real-time acoustic environment sensing

    No full text
    Underwater gliders are autonomous vehicles that use small changes in their buoyancy in conjunction with wings to convert vertical motion to horizontal, and thereby propel themselves forward, with very low power consumption, through the ocean for a long period of time. Gliders typically make measurements such as temperature, conductivity (to calculate salinity), currents, chlorophyll fluorescence, optical backscatter and bottom depth. However, such a platform could be a good candidate if properly equipped with an acoustic payload to persistently monitor the underwater acoustic environment. For that reason, NURC and the Technical University of Catalonia (UPC) decided in 2010 to jointly develop a glider acoustic payload that would provide the recording of two hydrophones but also, which is quite unique, provide in addition a real-time detection / classification (DC) capability. The DC capability will allow, while the glider being at-sea, to provide real-time feedback on the acoustic environment the glider is passing by, instead of only providing recording capability for postprocessing work as previously done in the past. The purpose of the paper is to describe the characteristics of the system that has been developed and additionally reports at-sea results from a deep-water WEBB glider operating in the Mediterranean Sea. Those results demonstrate the capability of the developed acoustic payload to detect and classify marine mammals in real-time within the glider. Examples of the noise generated by the glider are also presented
    corecore