296 research outputs found

    Glycolytic Reprogramming Through PCK2 Regulates Tumor Initiation of Prostate Cancer Cells

    Get PDF
    Tumor-initiating cells (TICs) play important roles in tumor progression and metastasis. Identifying the factors regulating TICs may open new avenues in cancer therapy. Here, we show that TIC-enriched prostate cancer cell clones use more glucose and secrete more lactate than TIC-low clones. We determined that elevated levels of phosphoenolpyruvate carboxykinase isoform 2 (PCK2) are critical for the metabolic switch and the maintenance of TICs in prostate cancer. Information from prostate cancer patient databases revealed that higher PCK2 levels correlated with more aggressive tumors and lower survival rates. PCK2 knockdown resulted in low TIC numbers, increased cytosolic acetyl-CoA and cellular protein acetylation. Our data suggest PCK2 promotes tumor initiation by lowering acetyl-CoA level through reducing the mitochondrial tricarboxylic acid (TCA) cycle. Thus, PCK2 is a potential therapeutic target for aggressive prostate tumors

    The JAK/STAT Pathway in Model Organisms Emerging Roles in Cell Movement

    Get PDF
    AbstractThe JAK/STAT pathway was originally identified in mammals. Studies of this pathway in the mouse have revealed that JAK/STAT signaling plays a central role during hematopoeisis and other developmental processes. The role of JAK/STAT signaling in blood appears to be conserved throughout evolution, as it is also required during fly hematopoeisis. Studies in Dictyostelium, Drosophila, and zebrafish have shown that the JAK/STAT pathway is also required in an unusually broad set of developmental decisions, including cell proliferation, cell fate determination, cell migration, planar polarity, convergent extension, and immunity. There is increasing evidence that the versatility of this pathway relies on its cooperation with other signal transduction pathways. In this review, we discuss the components of the JAK/STAT pathway in model organisms and what is known about its requirement in cellular and developmental processes. In particular, we emphasize recent insights into the role that this pathway plays in the control of cell movement

    Focus on topological quantum computation

    Get PDF
    Topological quantum computation started as a niche area of research aimed at employing particles with exotic statistics, called anyons, for performing quantum computation. Soon it evolved to include a wide variety of disciplines. Advances in the understanding of anyon properties inspired new quantum algorithms and helped in the characterization of topological phases of matter and their experimental realization. The conceptual appeal of topological systems as well as their promise for building fault-tolerant quantum technologies fuelled the fascination in this field. This 'focus on' collection brings together several of the latest developments in the field and facilitates the synergy between different approaches

    The assessment, serial evaluation, and subsequent sequelae of acute kidney injury (ASSESS-AKI) study: design and methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of acute kidney injury (AKI) has been increasing over time and is associated with a high risk of short-term death. Previous studies on hospital-acquired AKI have important methodological limitations, especially their retrospective study designs and limited ability to control for potential confounding factors.</p> <p>Methods</p> <p>The Assessment, Serial Evaluation, and Subsequent Sequelae of Acute Kidney Injury (ASSESS-AKI) Study was established to examine how a hospitalized episode of AKI independently affects the risk of chronic kidney disease development and progression, cardiovascular events, death, and other important patient-centered outcomes. This prospective study will enroll a cohort of 1100 adult participants with a broad range of AKI and matched hospitalized participants without AKI at three Clinical Research Centers, as well as 100 children undergoing cardiac surgery at three Clinical Research Centers. Participants will be followed for up to four years, and will undergo serial evaluation during the index hospitalization, at three months post-hospitalization, and at annual clinic visits, with telephone interviews occurring during the intervening six-month intervals. Biospecimens will be collected at each visit, along with information on lifestyle behaviors, quality of life and functional status, cognitive function, receipt of therapies, interim renal and cardiovascular events, electrocardiography and urinalysis.</p> <p>Conclusions</p> <p>ASSESS-AKI will characterize the short-term and long-term natural history of AKI, evaluate the incremental utility of novel blood and urine biomarkers to refine the diagnosis and prognosis of AKI, and identify a subset of high-risk patients who could be targeted for future clinical trials to improve outcomes after AKI.</p

    A Dominant Negative ERβ Splice Variant Determines the Effectiveness of Early or Late Estrogen Therapy after Ovariectomy in Rats

    Get PDF
    The molecular mechanisms for the discrepancy in outcome of initiating estrogen therapy (ET) around peri-menopause or several years after menopause in women are unknown. We hypothesize that the level of expression of a dominant negative estrogen receptor (ER) β variant, ERβ2, may be a key factor determining the effectiveness of ET in post-menopausal women. We tested this hypothesis in ovariectomized nine month-old (an age when irregular estrous cycles occur) female Sprague Dawley rats. Estradiol treatment was initiated either 6 days (Early ET, analogous to 4 months post-menopause in humans), or 180 days (Late ET, analogous to 11 years post-menopause in humans) after ovariectomy. Although ERβ2 expression increased in all OVX rats, neurogenic and neuroprotective responses to estradiol differed in Early and Late ET. Early ET reduced ERβ2 expression in both hippocampus and white blood cells, increased the hippocampal cell proliferation as assessed by Ki-67 expression, and improved mobility in the forced swim test. Late ET resulted in either no or modest effects on these parameters. There was a close correlation between the degree of ERβ2 expression and the preservation of neural effects by ET after OVX in rats, supporting the hypothesis that persistent elevated levels of ERβ2 are a molecular basis for the diminished effectiveness of ET in late post-menopausal women. The correlation between the expression of ERβ2 in circulating white blood cells and brain cells suggests that ERβ2 expression in peripheral blood cells may be an easily accessible marker to predict the effective window for ET in the brain

    CHEMICAL CARTOGRAPHY with APOGEE: METALLICITY DISTRIBUTION FUNCTIONS and the CHEMICAL STRUCTURE of the MILKY WAY DISK

    Get PDF
    Using a sample of 69,919 red giants from the SDSS-III/APOGEE Data Release 12, we measure the distribution of stars in the [/Fe] versus [Fe/H] plane and the metallicity distribution functions (MDFs) across an unprecedented volume of the Milky Way disk, with radius 3 < R < 15 kpc and height kpc. Stars in the inner disk (R < 5 kpc) lie along a single track in [/Fe] versus [Fe/H], starting with -enhanced, metal-poor stars and ending at [/Fe] ∼ 0 and [Fe/H] ∼ +0.4. At larger radii we find two distinct sequences in [/Fe] versus [Fe/H] space, with a roughly solar- sequence that spans a decade in metallicity and a high- sequence that merges with the low- sequence at super-solar [Fe/H]. The location of the high- sequence is nearly constant across the disk

    Neuronal Deletion of Caspase 8 Protects against Brain Injury in Mouse Models of Controlled Cortical Impact and Kainic Acid-Induced Excitotoxicity

    Get PDF
    system. mice demonstrated superior survival, reduced seizure severity, less apoptosis, and reduced caspase 3 processing. Uninjured aged knockout mice showed improved learning and memory, implicating a possible role for caspase 8 in cognitive decline with aging.Neuron-specific deletion of caspase 8 reduces brain damage and improves post-traumatic functional outcomes, suggesting an important role for this caspase in pathophysiology of acute brain trauma

    Polymerization-Induced Self-Assembly of Block Copolymer Nano-objects via RAFT Aqueous Dispersion Polymerization

    Get PDF
    In this Perspective, we discuss the recent development of polymerization-induced self-assembly mediated by reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization. This approach has quickly become a powerful and versatile technique for the synthesis of a wide range of bespoke organic diblock copolymer nano-objects of controllable size, morphology, and surface functionality. Given its potential scalability, such environmentally-friendly formulations are expected to offer many potential applications, such as novel Pickering emulsifiers, efficient microencapsulation vehicles, and sterilizable thermo-responsive hydrogels for the cost-effective long-term storage of mammalian cells
    corecore