11 research outputs found

    Favorable association between Mediterranean diet (MeD) and DASH with NAFLD among Iranian adults of the Amol Cohort Study (AmolCS)

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is an emerging cause of chronic liver diseases and a major health problem worldwide. Dietary patterns may play a critical role in controlling and preventing this disease, but the available evidence is scarce. The current study aims to ascertain the association of adherence to the Dietary Approach to Stop Hypertension (DASH) diet and Mediterranean diet (MeD) with nonalcoholic fatty liver disease (NAFLD) among Iranian adults of the Amol Cohort Study (AmolCS). In a cross-sectional analysis among 3220 adults (55.3% men), age ≥ 18 years (46.96 ± 14.67), we measured usual dietary intake with a validated food frequency questionnaire (FFQ) and then calculated dietary pattern scores for DASH and MeD. Sociodemographic and lifestyle factors were collected by a structured questionnaire. The presence and degree of NAFLD were also determined by abdominal sonography. Multiple regression models were used to estimate NAFLD odds across tertiles of DASH and Mediterranean dietary scores. Dietary DASH and Mediterranean components were adjusted for total energy intake, based on the residual methods. After adjusting for multiple potential confounders, we found an inverse association of DASH and MeD with NAFLD (Ptrend = 0.02, and Ptrend = 0.002, respectively). Those in the highest tertiles of adherence to the DASH and MeD had the lowest risk for NAFLD (OR = 0.80, 95%CI = 0.66–0.96, OR = 0.64, 95%CI = 0.52–0.78, respectively). The results of logistic analysis of MeD, stratified by gender and abdominal obesity, revealed the favorable association was more pronounced in women (OR = 0.42, 95%CI = 0.29–0.61, Ptrend = 0.004), and in participants with or without abdominal obesity (OR = 0.62, 95% CI = 0.47–0.81, Ptrend = 0.03, OR = 0.64, 95%CI = 0.475–0.91, Ptrend = 0.04, respectively). Similar results were obtained for the adherence to DASH diet score with the prevalence of NAFLD patients with abdominal obesity (OR = 0.75, 95% CI = 0.57–0.97, Ptrend = 0.04). The findings suggested the favorable association between DASH and MeD with NAFLD in Iranian adults, especially women and subjects with or without abdominal obesity. Further prospective investigations are needed to confirm the integrity of our findings

    Evaluation of phytochemicals, antioxidant and burn wound healing activities of Cucurbita moschata Duchesne fruit peel

    Get PDF
    Objective(s): Cucurbita moschata Duchesne (pumpkin) is a well-known plant with several pharmacological effects. The aim of the present study was to assess burn wound healing activity of C. moschata peel extract (CE). Also, standardized CE was assessed for antioxidant activity and antibacterial effects against major pathogens of burns. Materials and Methods: Healing properties of topical preparation of 10% and 20% concentrations of CE were assessed on second degree burn in rats during a 14-day period as well as histological studies, total antioxidant power, lipid peroxidation and total thiol content of skin tissue samples. Results: Radical scavenging IC50 and ferric-reducing antioxidant power value were 4.015±0.20 mg/ml and 142.63±2.65 mmol Fe2+/g, respectively. Total mucilage content was 13.8%. The optimal results were obtained by 20% CE that showed 90.80±5.86 % wound closure and tissue repair as well as significant reduction of tissue oxidative stress biomarkers. Histological analyses confirmed wound healing activity of pumpkin peel extract. Conclusion: Considering the high mucilage content of the plant, providing a moist environment for wound, C. moschata peel extract could be a natural remedy for treatment of burns. Further clinical studies are suggested to confirm C. moschata peel extract as a wound healing agent

    Sustainable rural development in Northwest Iran: proposing a wellness-based tourism pattern using a structural equation modeling approach

    No full text
    Abstract Today, wellness tourism has become a thriving industry. In wellness tourism, the tourists travel to relieve the pressures of ordinary life and become refreshed with no medicinal intervention. In wellness tourism, tourists seldom have any specific physical illnesses; rather, they are interested in enjoying the healing properties of certain regions. In this non-experimental research, a structural equation model was used to analyze the data to explore various aspects of well-being and identify the variables that influence wellness tourism. The statistical population included 237,415 tourists who visited the tourist attractions of Sarab County in Iran. The sample size was determined 384 subjects. The results showed that destination location in terms of climate, positive image of the region, excellent food, as well as physical, traditional, and historical appeals of the region, were the factors that had the highest effect on determining the destination of wellness tourism. In general, this study contributed to the development of wellness tourism in the world including Iran. The practical steps were taken based on the strategies, and approaches presented to reduce stress which enhances well-being during the COVID-19 outbreak

    Multi-factor optimization of bio-methanol production through gasification process via statistical methodology coupled with genetic algorithm

    Get PDF
    This work innovatively explores the bio-methanol production process, conducts comprehensive analyses, develops statistical models, and optimizes operational conditions, contributing valuable insights to the field of sustainable energy production from biomass. Accordingly, bio-methanol production from biomass through gasification route was investigated and simulated using Aspen Plus software. The effects of operational parameters on energy duty of gasification reactor and the methanol production rate in syngas to methanol reactor were investigated. The parameters affecting the process performance including temperature, pressure, and steam/feed ratio were examined using the response surface methodology (RSM) by central composite design (CCD) technique. Analysis of variance (ANOVA) was performed, and two quadratic models were derived. The predicted R2 values of these models for methanol mass flowrate and energy duty were 0.9394 and 0.9363, respectively. The optimal operational conditions were identified using genetic algorithm (GA). The optimum values of temperature, pressure, and steam/feed ratio in gasification reactor were 900 â—¦C, 4 bar, and 0.675, respectively. This condition leads to methanol mass flowrate and energy duty of 4.254 kg/s and 40736.355 kw, respectively. In addition, sensitivity analysis was performed on syngas to methanol reactor performance

    Multi-factor optimization of bio-methanol production through gasification process via statistical methodology coupled with genetic algorithm

    No full text
    This work innovatively explores the bio-methanol production process, conducts comprehensive analyses, develops statistical models, and optimizes operational conditions, contributing valuable insights to the field of sustainable energy production from biomass. Accordingly, bio-methanol production from biomass through gasification route was investigated and simulated using Aspen Plus software. The effects of operational parameters on energy duty of gasification reactor and the methanol production rate in syngas to methanol reactor were investigated. The parameters affecting the process performance including temperature, pressure, and steam/feed ratio were examined using the response surface methodology (RSM) by central composite design (CCD) technique. Analysis of variance (ANOVA) was performed, and two quadratic models were derived. The predicted R2 values of these models for methanol mass flowrate and energy duty were 0.9394 and 0.9363, respectively. The optimal operational conditions were identified using genetic algorithm (GA). The optimum values of temperature, pressure, and steam/feed ratio in gasification reactor were 900 °C, 4 bar, and 0.675, respectively. This condition leads to methanol mass flowrate and energy duty of 4.254 kg/s and 40736.355 kw, respectively. In addition, sensitivity analysis was performed on syngas to methanol reactor performance

    Efficacy of topical application of standardized extract of Tragopogon graminifolius in the healing process of experimental burn wounds

    No full text
    Tragopogon graminifolius DC. is a perennial plant from the family Asteraceae which grows in West parts of Iran. Several biological activities like antimicrobial, antioxidant and anti-inflammatory effects are reported for the plant. The aim of this study was to assess the wound healing activity of standardized extract from T. graminifolius (TG) aerial parts. Topical standardized TG extract with 5% and 10% concentrations in eucerine base was assessed for its healing properties on second degree burn in rats during a 14-day period. Biomarkers of oxidative damage including total antioxidant power, lipid peroxidation and total thiol molecules of the skin tissue samples were also evaluated. Results showed that 10%TG had the best efficacy with 80 ± 3% wound closure and tissue repair in comparison to negative control (p < 0.05). Significant reduction of tissue oxidative stress biomarkers was also observed. Histological analyses confirmed wound healing activity of TG extract, as well. Considering the antioxidative stress and anti-inflammatory activities of TG, explained by the high content of phenolic compounds of the plant, standardized TG extract could be considered as a natural remedy for the treatment of burn wounds. Further clinical studies are suggested to confirm the effectiveness of TG as a wound healing agent. Keywords: Tragopogon graminifolius, Second-degree burn, Oxidative stress, Medicinal plan

    Dietary Acid Load (DAL), Glycated Hemoglobin A1c (HbA1c), and Metabolic Syndrome (MeS) Mediate the Association of the Adherence to the Dietary Approaches to Stopping Hypertension (DASH) and Mediterranean Diet (MeD) With Nonalcoholic Fatty Liver Disease

    Get PDF
    The study aimed to investigate the association of adults adhering to Dietary Approaches to Stop Hypertension (DASH) and Mediterranean diet (MeD) with nonalcoholic fatty liver disease (NAFLD) using structural equation modeling (SEM) in Iran. In this population-based cross-sectional study, 3,220 adults (44.65% female) aged ≥18 years were selected from the Amol Cohort Study (AmolCS). The dietary intakes were assessed by a validated 168-item semi-quantitative food-frequency questionnaire (FFQ). Residual method energy adjustment of MeD and DASH scores were calculated. Demographic characteristics and anthropometric and laboratory measurements were collected. NAFLD was diagnosed by an expert radiologist via ultrasound sonography. Based on the primary hypothesis, DASH, MeD, and NAFLD were fitted into models. Metabolic syndrome (MeS) as a potential risk factor directly affected NAFLD risk in all these models. In both genders, the higher adherence to DASH negatively affected NAFLD risk indirectly through the two following paths. (1) Dietary acid load (DAL) and metabolic syndrome (2) DAL and hemoglobin A1c (HbA1c). In addition, the higher DAL positively affected NAFLD risk among male participants indirectly via increasing HbA1c level and MeS (from DAL to HbA1c: β = 0.07, P < 0.001; from HbA1c to MeS: β = 0.10, P < 0.001). Similarly, in both genders, the relationship between MeD and NAFLD was mediated through (1) DAL, HbA1c, and MeS and (2) DAL and MeS. Further, among male participants, the MeD and NAFLD risk were also associated via the mediators of HbA1c and MeS. In female participants, the higher MeD score was directly associated with a reduction of NAFLD risk (β = −0.07, P = 0.008). The present study found three important mediators, including DAL, HbA1c, and MeS, in the association of DASH and MeD scores with NAFLD risk. Preventive and therapeutic interventions should target the mediators, including DAL, HbA1c, MeS, and its components, to reduce NAFLD incidence in the general population

    Synthetic and biological identities of polymeric nanoparticles influencing the cellular delivery:An immunological link

    Get PDF
    Enhanced understanding of bio-nano interaction requires recognition of hidden factors such as protein corona, a layer of adsorbed protein around nano-systems. This study compares the biological identity and fingerprint profile of adsorbed proteins on PLGA-based nanoparticles through nano-liquid chromatography-tandem mass spectrometry. The total proteins identified in the corona of nanoparticles (NPs) with different in size, charge and compositions were classified based on molecular mass, isoelectric point and protein function. A higher abundance of complement proteins was observed in modified NPs with an increased size, while NPs with a positive surface charge exhibited the minimum adsorption for immunoglobulin proteins. A correlation of dysopsonin/opsonin ratio was found with cellular uptake of NPs exposed to two positive and negative Fc receptor cell lines. Although the higher abundance of dysopsonins such as apolipoproteins may cover the active sites of opsonins causing a lower uptake, the correlation of adsorbed dysopsonin/opsonin proteins on the NPs surface has an opposite trend with the intensity of cell uptake. Despite the reduced uptake of corona-coated NPs in comparison with pristine NPs, the dysopsonin/opsonin ratio controlled by the physicochemistry properties of NPs could potentially be used to tune up the cellular delivery of polymeric NPs. (C) 2019 Elsevier Inc. All rights reserved
    corecore