142 research outputs found
Boron Nutrition of Tobacco BY-2 Cells. V. Oxidative Damage is the Major Cause of Cell Death Induced by Boron Deprivation
Boron (B) is an essential micronutrient for vascular plants. However, it remains unclear how B deficiency leads to various metabolic disorders and cell death. To understand this mechanism, we analyzed the physiological changes in suspension-cultured tobacco (Nicotiana tabacum) BY-2 cells upon B deprivation. When 3-day-old cells were transferred to B-free medium, cell death was detectable as early as 12 h after treatment. The B-deprived cells accumulated more reactive oxygen species and lipid peroxides than control cells, and showed a slight but significant decrease in the cellular ascorbate pool. Supplementing the media with lipophilic antioxidants effectively suppressed the death of B-deprived cells, suggesting that the oxidative damage is the immediate and major cause of cell death under B deficiency. Dead cells in B-free culture exhibited a characteristic morphology with a shrunken cytoplasm, which is often seen in cells undergoing programmed cell death (PCD). However, they did not display other hallmarks of PCD such as internucleosomal DNA fragmentation, decreased ascorbate peroxidase expression and protection from death by cycloheximide. These results suggest that the death of tobacco cells induced by B deprivation is not likely to be a typical PCD
Xyloglucan endotransglucosylase and cell wall extensibility
Transgenic tomato hypocotyls with altered levels of an XTH gene were used to study how XET activity could affect the hypocotyl growth and cell wall extensibility. Transgenic hypocotyls showed significant over-expression (line 13) or co-suppression (line 33) of the SlXTH1 in comparison with the wild type, with these results being correlated with the results on specific soluble XET activity, suggesting that SlXTH1 translates mainly for a soluble XET isoenzyme. A relationship between XET activity and cell wall extensibility was found, and the highest total extensibility was located in the apical hypocotyl segment of the over-expressing SlXTH1 line, where the XET-specific activity and hypocotyl growth were also highest compared with the wild line
Examination of the Nitric Oxide Production-Suppressing Component in Tinospora tuberculata
The component of aqueous Tinospora tuberculata extract that inhibits nitric oxide (NO) production was examined using macrophages activated by the addition of lipopolysaccharide. The aqueous extract was partitioned with ethyl acetate. The aqueous layer was fractionated with a Diaion column. The residue of the aqueous extract was extracted with methanol, and partitioned with ethyl acetate. The ethyl acetate layer was found to be associated with a distinct decrease in the NO level and inducible NO synthase. On further fractionation, the subfraction of E-3 showed high anti-NO activity. N-trans-Feruloyltyramine isolated from E-3 was identified as exhibiting strong anti-NO activity. This compound is the most active component of Tinospora tuberculata with respect to the suppression of NO production
Recommended from our members
A simple and versatile 2-dimensional platform to study plant germination and growth under controlled humidity
We describe a simple, inexpensive, but remarkably versatile and controlled growth environment for the observation of plant germination and seedling root growth on a flat, horizontal surface over periods of weeks. The setup provides to each plant a controlled humidity (between 56% and 91% RH), and contact with both nutrients and atmosphere. The flat and horizontal geometry of the surface supporting the roots eliminates the gravitropic bias on their development and facilitates the imaging of the entire root system. Experiments can be setup under sterile conditions and then transferred to a non-sterile environment. The system can be assembled in 1-2 minutes, costs approximately 8.78 per experiment in disposables), and is easily scalable to a variety of plants. We demonstrate the performance of the system by germinating, growing, and imaging Wheat (Triticum aestivum), Corn (Zea mays), and Wisconsin Fast Plants (Brassica rapa). Germination rates were close to those expected for optimal conditions
Comparative Proteomics Analysis of the Root Apoplasts of Rice Seedlings in Response to Hydrogen Peroxide
-responsive proteins in the apoplast of rice seedling roots. stress. response
- …