142 research outputs found

    Boron Nutrition of Tobacco BY-2 Cells. V. Oxidative Damage is the Major Cause of Cell Death Induced by Boron Deprivation

    Get PDF
    Boron (B) is an essential micronutrient for vascular plants. However, it remains unclear how B deficiency leads to various metabolic disorders and cell death. To understand this mechanism, we analyzed the physiological changes in suspension-cultured tobacco (Nicotiana tabacum) BY-2 cells upon B deprivation. When 3-day-old cells were transferred to B-free medium, cell death was detectable as early as 12 h after treatment. The B-deprived cells accumulated more reactive oxygen species and lipid peroxides than control cells, and showed a slight but significant decrease in the cellular ascorbate pool. Supplementing the media with lipophilic antioxidants effectively suppressed the death of B-deprived cells, suggesting that the oxidative damage is the immediate and major cause of cell death under B deficiency. Dead cells in B-free culture exhibited a characteristic morphology with a shrunken cytoplasm, which is often seen in cells undergoing programmed cell death (PCD). However, they did not display other hallmarks of PCD such as internucleosomal DNA fragmentation, decreased ascorbate peroxidase expression and protection from death by cycloheximide. These results suggest that the death of tobacco cells induced by B deprivation is not likely to be a typical PCD

    Xyloglucan endotransglucosylase and cell wall extensibility

    Full text link
    Transgenic tomato hypocotyls with altered levels of an XTH gene were used to study how XET activity could affect the hypocotyl growth and cell wall extensibility. Transgenic hypocotyls showed significant over-expression (line 13) or co-suppression (line 33) of the SlXTH1 in comparison with the wild type, with these results being correlated with the results on specific soluble XET activity, suggesting that SlXTH1 translates mainly for a soluble XET isoenzyme. A relationship between XET activity and cell wall extensibility was found, and the highest total extensibility was located in the apical hypocotyl segment of the over-expressing SlXTH1 line, where the XET-specific activity and hypocotyl growth were also highest compared with the wild line

    Examination of the Nitric Oxide Production-Suppressing Component in Tinospora tuberculata

    Get PDF
    The component of aqueous Tinospora tuberculata extract that inhibits nitric oxide (NO) production was examined using macrophages activated by the addition of lipopolysaccharide. The aqueous extract was partitioned with ethyl acetate. The aqueous layer was fractionated with a Diaion column. The residue of the aqueous extract was extracted with methanol, and partitioned with ethyl acetate. The ethyl acetate layer was found to be associated with a distinct decrease in the NO level and inducible NO synthase. On further fractionation, the subfraction of E-3 showed high anti-NO activity. N-trans-Feruloyltyramine isolated from E-3 was identified as exhibiting strong anti-NO activity. This compound is the most active component of Tinospora tuberculata with respect to the suppression of NO production

    Growth Regulation Mechanisms in Higher Plants under Microgravity Conditions. Changes in Cell Wall Metabolism.

    No full text

    Gravity resistance, another graviresponse in plants-Function of anti-gravitational polysaccharides

    No full text
    corecore