1,066 research outputs found

    Absolute instabilities of travelling wave solutions in a Keller-Segel model

    Full text link
    We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have essential spectrum in the right half plane. However, we show that in the case of constant or sublinear consumption there exists a range of parameters such that the absolute spectrum is contained in the open left half plane and the essential spectrum can thus be weighted into the open left half plane. For the constant and sublinear consumption rate models we also determine critical parameter values for which the absolute spectrum crosses into the right half plane, indicating the onset of an absolute instability of the travelling wave solution. We observe that this crossing always occurs off of the real axis

    Enhanced response switching after negative feedback and novelty seeking in adolescence are associated with reduced representation of choice probability in medial frontal pole

    Get PDF
    Precisely charting the maturation of core neurocognitive functions such as reinforcement learning (RL) and flexible adaptation to changing action-outcome contingencies is key for developmental neuroscience. It can also help us understand how disruptions during development might contribute to the onset of psychopathology. However, research in this area is both sparse and conflicted, especially regarding potentially asymmetric development of learning for different motives (obtain wins vs avoid losses) and learning from valenced feedback (positive vs negative). In the current study, we investigated the development of RL from adolescence to adulthood, using a probabilistic reversal learning task modified to experimentally separate motivational context and feedback valence, in a sample of 95 healthy participants between 12 and 45. We show that adolescence is characterized by enhanced novelty seeking and response shifting after negative feedback, which leads to poorer returns when reward contingencies are stable. Computationally, this is accounted for by reduced impact of positive feedback on behavior. We also show, using fMRI, that activity of the medial frontopolar cortex reflecting choice probability is attenuated in adolescence. We argue that this can be interpreted as reflecting diminished confidence in upcoming choices. Interestingly, we find no age-related differences between learning in win and loss contexts

    On the robustness of entanglement in analogue gravity systems

    Get PDF
    We investigate the possibility of generating quantum-correlated quasi-particles utilizing analogue gravity systems. The quantumness of these correlations is a key aspect of analogue gravity effects and their presence allows for a clear separation between classical and quantum analogue gravity effects. However, experiments in analogue systems, such as Bose–Einstein condensates (BECs) and shallow water waves, are always conducted at non-ideal conditions, in particular, one is dealing with dispersive media at non-zero temperatures. We analyse the influence of the initial temperature on the entanglement generation in analogue gravity phenomena. We lay out all the necessary steps to calculate the entanglement generated between quasi-particle modes and we analytically derive an upper bound on the maximal temperature at which given modes can still be entangled. We further investigate a mechanism to enhance the quantum correlations. As a particular example, we analyse the robustness of the entanglement creation against thermal noise in a sudden quench of an ideally homogeneous BEC, taking into account the super-sonic dispersion relations

    Wavelet Analysis for Wind Fields Estimation

    Get PDF
    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B3 spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms

    Hawking Radiation on an Ion Ring in the Quantum Regime

    Full text link
    This paper discusses a recent proposal for the simulation of acoustic black holes with ions. The ions are rotating on a ring with an inhomogeneous, but stationary velocity profile. Phonons cannot leave a region, in which the ion velocity exceeds the group velocity of the phonons, as light cannot escape from a black hole. The system is described by a discrete field theory with a nonlinear dispersion relation. Hawking radiation is emitted by this acoustic black hole, generating entanglement between the inside and the outside of the black hole. We study schemes to detect the Hawking effect in this setup.Comment: 42 pages (one column), 17 figures, published revised versio

    The one-dimensional Keller-Segel model with fractional diffusion of cells

    Get PDF
    We investigate the one-dimensional Keller-Segel model where the diffusion is replaced by a non-local operator, namely the fractional diffusion with exponent 0<α≀20<\alpha\leq 2. We prove some features related to the classical two-dimensional Keller-Segel system: blow-up may or may not occur depending on the initial data. More precisely a singularity appears in finite time when α<1\alpha<1 and the initial configuration of cells is sufficiently concentrated. On the opposite, global existence holds true for α≀1\alpha\leq1 if the initial density is small enough in the sense of the L1/αL^{1/\alpha} norm.Comment: 12 page

    Entirely irrelevant distractors can capture and captivate attention

    Get PDF
    The question of whether a stimulus onset may capture attention when it is entirely irrelevant to the task and even in the absence of any attentional settings for abrupt onset or any dynamic changes has been highly controversial. In the present study, we designed a novel irrelevant capture task to address this question. Participants engaged in a continuous task making sequential forced choice (letter or digit) responses to each item in an alphanumeric matrix that remained on screen throughout many responses. This task therefore involved no attentional settings for onset or indeed any dynamic changes, yet the brief onset of an entirely irrelevant distractor (a cartoon picture) resulted in significant slowing of the two (Experiment 1) or three (Experiment 2) responses immediately following distractor appearance These findings provide a clear demonstration of attention being captured and captivated by a distractor that is entirely irrelevant to any attentional settings of the task
    • 

    corecore