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ABSTRACT 

Precisely charting the maturation of core neurocognitive functions such as 

reinforcement learning (RL) and flexible adaptation to changing action-outcome 

contingencies is key for developmental neuroscience. It can also help us understand 

how disruptions during development might contribute to the onset of psychopathology. 

However, research in this area is both sparse and conflicted, especially regarding 

potentially asymmetric development of learning for different motives (obtain wins vs 

avoid losses) and learning from valenced feedback (positive vs negative). In the current 

study, we investigated the development of RL from adolescence to adulthood, using a 

probabilistic reversal learning task modified to experimentally separate motivational 

context and feedback valence, in a sample of 95 healthy participants between 12 and 

45. We show that adolescence is characterized by enhanced novelty seeking and 

response shifting after negative feedback, which leads to poorer returns when reward 

contingencies are stable. Computationally, this is accounted for by reduced impact of 

positive feedback on behavior. We also show, using fMRI, that activity of the medial 

frontopolar cortex reflecting choice probability is attenuated in adolescence. We argue 

that this can be interpreted as reflecting diminished confidence in upcoming choices. 

Interestingly, we find no age-related differences between learning in win and loss 

contexts. 

 

Keywords: Adolescence, Reversal Learning, Reinforcement Learning, 
Computational Modelling, fMRI 
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1. INTRODUCTION 

Adolescence is a pivotal period of neurocognitive development (Dahl et al., 2018). 

Precisely charting the maturation of critical neurocognitive functions such as 

reinforcement learning can help us, for example, tailor educational programs to 

different age groups, but also understand potentially consequential developmental 

difficulties. Thus, many psychiatric disorders with adolescent onset (Kessler et al., 

2007; Paus et al., 2008) are associated with altered reinforcement learning (RL) and 

impaired adaptation to changing action-outcome contingencies (Crawley et al., 2020; 

Hauser et al., 2014; Mukherjee et al., 2020; Reddy et al., 2016; Reiter et al., 2016, 

2017; Robinson et al., 2012; Schlagenhauf et al., 2014; Smith et al., 2015; Tezcan et 

al., 2017). Yet whether and how disruptions during development might contribute to 

their etiology is unclear, partly because our understanding of the normative 

development of reinforcement learning is still incomplete and conflicted. 

Evidence from self-reports and functional neuroimaging (mainly during gambling/risk 

taking tasks) suggests that adolescence is characterized by heighted reward sensitivity 

and/or reduced punishment sensitivity (Barkley-Levenson & Galván, 2014; Davidow et 

al., 2016; Ernst et al., 2005; Galvan et al., 2006; Schreuders et al., 2018; although see 

e.g., Bjork et al., 2004). However, there is little indication that this straightforwardly 

translates to differences in reinforcement learning and instrumental behavior. Indeed, 

several studies indicate diminished impact of feedback (learnt values) on instrumental 

behavior in youths, evidenced by enhanced choice switching and stochasticity (e.g., 

Christakou et al., 2013; Crawley et al., 2020; Eckstein et al., 2021; Javadi et al., 2014; 

see Bolenz et al., 2017; Nussenbaum & Hartley, 2019 for reviews). Reports of age 

effects on the neural coding of reward prediction errors (RPEs) are largely incongruous 

(Christakou et al., 2013; Cohen et al., 2010; Hauser et al., 2015; Javadi et al., 2014; 

van den Bos et al., 2012), as are findings of age differences in learning rates for 

positive and negative feedback (Christakou et al., 2013; Jones et al., 2014; 

Rosenbaum et al., 2022; van den Bos et al., 2012). In a recent review, Nussenbaum 

& Hartley (2019) suggest that such inconsistencies might partially stem from different 

task demands. They argue that, rather than monotonically changing during 

development, learning rates and processes like RPE coding may become more task-

optimal with age.  

Though compelling, this does not explain inconsistencies between studies that 

employed tasks whose demands are largely similar. For example, Eckstein et al. 
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(2021) and Hauser et al. (2015) report opposite effects of age on learning rates for 

positive and negative feedback – yet both employed a probabilistic reversal learning 

task. Interestingly, in Eckstein et al.'s (2021) study, the outcomes available were wins 

and neutral events, while in Hauser et al.'s (2015) study, there were losses as well as 

wins. Given evidence that adolescents may learn better from wins than losses 

(Palminteri et al., 2016), this difference in motivational context may have been 

paramount. However, effects of motivational context (obtain wins vs avoid losses) and 

feedback valence (positive vs negative) were not differentiated in these studies. But 

learning in different motivational contexts and learning from unexpected positive and 

negative outcomes may have distinct developmental trajectories. Experimentally 

separating motivational context and feedback valence is therefore a necessary next 

step in charting the development of RL.  

In the present study, we employed a mixed cross-sectional and longitudinal design to 

investigate the development of probabilistic reversal learning in a sample of 

adolescents and younger and older adults (12-45 years). We aimed, first, to replicate 

the relatively consistent previous finding of enhanced choice switching in adolescence 

compared to adulthood. Second, we aimed to disentangle learning in different 

motivational contexts (gain rewards vs avoid losses) from valenced feedback 

processing (positive vs. negative). To this end, we used a task modified to separate 

the influences of motivational context from feedback valence. We also introduced a 

post-task test designed to measure how well participants learned from wins compared 

to losses in the main task (Frank et al., 2004; Palminteri et al., 2016). In this task, 

familiar stimuli are pitted against one another and against novel stimuli. Based on the 

literature, we expected younger participants to perform worse when trying to avoid 

losses (Palminteri et al., 2016), and to process valenced feedback less optimally (i.e., 

less staying after positive, more switching after negative feedback) compared to older 

participants  (Crawley et al., 2020; Javadi et al., 2014). Third, we aimed to identify 

differences in computational processes that may underly age differences in behavior. 

Previous work indicated increased choice stochasticity/decreased feedback sensitivity 

(Eckstein et al., 2021; Javadi et al., 2014; Nussenbaum & Hartley, 2019) and 

decreased counterfactual inference in youths (Palminteri et al., 2016). Finally, we 

aimed to chart the development of the neural representations of RPEs and relative 

value (choice probability).    
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2. METHODS  

2.1. Participants and procedure. 

As part of a larger study, we recruited N = 95 right-handed healthy participants between 

the ages of 12 and 45 from the participant pool of the Max Planck Institute for Human 

Cognitive and Brain Sciences, as well as via advertisements in local schools, 

universities, GP practices, gyms, and shops. The study protocol consisted of a battery 

of interviews, questionnaires, physical examinations, neuropsychological 

assessments, and tasks (reported in full elsewhere). As part of this protocol, 

participants performed a probabilistic reversal learning task during functional magnetic 

resonance imaging (MRI) and completed a post-task probabilistic selection task (~30 

min. after the end of the main task). Additionally, they completed the Trail-Making Test 

(Reitan, 1958), the digit-symbol-substitution task (Wechsler, 2008), a digitalized 

version of the digit span task (Wechsler, 2008) and a vocabulary test (Wortschatztest) 

(Schmidt & Metzler, 1992). A minimum of 6 months after their first visit (max 41 months, 

median = 8.71 months), participants were re-invited for a follow-up session in which 

they repeated the probabilistic reversal learning task and the post-task probabilistic 

selection task (without MRI measurement). Participants were compensated for their 

time (money or an Amazon voucher for minors) separately after the second and third 

study day. Information on demographics and neuropsychology is summarized in Table 

1.  

 

Table 1. Demographics and Neuropsychological Assessment 

 

Adolescents 

(Age ≤18) 

Adults 

(Age >18) 

N 40 55 

Age 14.80 (±1.66) 28.68 (±5.58) 

Follow-up Interval (years) 1.08 (±0.75) 1.09 (±0.76) 

Drop-out 7.5 % 30.91 % 

Gender (% female) 50.00 % 60.00 % 

Years of education (full-time) 8.39 (±1.71) 17.29 (±3.89) 



 6 

TMT-A (seconds) 24.13 (±8.72) 19.53 (±5.62) 

TMT-B (seconds) 52.94 (±25.42) 39.47 (±11.63) 

Digit Span Forward (levels achieved) 5.85 (±1.14) 6.69 (±1.53) 

Digit Span Backwards (levels achieved) 4.80 (±0.99) 5.38 (±1.52) 

Digit-Symbol-Substitution Task (symbols 

completed) 67.60 (±14.90) 82.04 (±15.31) 

Wortschatztest (raw score) 21.43 (±7.79) 33.75 (±2.66) 

N.B. Unless stated otherwise, values represent means, brackets contain standard 

deviations 

 

2.2. Task. 

The probabilistic reversal learning task (PRLT) employed in this study (see also 

Boehme et al., 2015; Deserno et al., 2020; Reiter et al., 2016, 2017 for similar 

implementations), consists of two blocks of 140 trials in which participants make 

repeated binary choices between two cards. The cards are associated with different 

probabilities of winning (+10 cents) or not winning (±0 cents) (80%-20% and 20%-80%, 

respectively) in the win block, and of losing (-10 cents) or not losing (±0 cents) in the 

loss block (order counterbalanced). Neutral outcomes (±0 cents) signal negative 

feedback (no win) in the win condition, and positive feedback (no loss) in the loss 

condition. Independent from feedback valence, the motivational context in the two 

blocks is different: in the win condition, the goal is to collect as many rewards as 

possible; in the loss condition, the goal is to avoid losses.  

In each trial, after making a choice by pressing a button (button box in the MRI, “n” and 

“m” keys on the PC for training), participants are shown a feedback screen (a picture 

of a 10-cents coin with a green plus sign for wins, a picture of a 0 cents coin for neutral 

outcomes, a picture of a 10-cents coin with a red minus sign for losses) for 0.5 seconds. 

Feedback (positive vs negative) is read out at each trial from a pre-defined schedule 

that was designed to match the reward/loss probabilities (i.e., for an 80%-win stimulus, 

1 in every 5 choices was not rewarded). The feedback screen is followed by a variable 

inter-trial interval with a mean of 2.5 seconds, in which participants are shown a fixation 

cross (Fig. 1 – A, upper panel). After an initial acquisition phase (1st to 35th trial) the 



 7 

cards’ reward contingencies flip 5 times (after the 35th, 55th, 70th, 85th, and 105th trial), 

such that the previously more lucrative/less losing stimulus now becomes the more 

frequently neutral/losing one, and vice versa. For details, see Fig. 1 – A, lower panel. 

In the bonus task, a probabilistic selection task, the stimuli from the two blocks of the 

PRLT and two novel stimuli (instructed as yielding a neutral outcome, i.e., neither win 

nor loss) are presented in all possible pairings, 3 times for each pair (totaling 45 trials). 

For each pair, participants have to pick the stimulus they thought most likely to produce 

a win / avoid a loss, without receiving feedback, equivalent to the “test phase” of the 

Frank probabilistic stimulus selection task (Frank et al., 2004) (Fig. 1 – B). 

 

 

 Fig. 1. A, upper panel – Design of the probabilistic reversal learning task (PRLT). In each condition 

(block), participants make 140 binary choices between two abstract stimuli (cards) with different 

probabilities of obtaining rewards, neutral outcomes, or losses (rewards and neutral outcomes in the win 
condition, neutral outcomes and losses in the loss condition). They are instructed to gain as much and 

lose as little money as possible, depending on condition. At each trial, the stimuli are shown for a 

maximum of 1500ms or until the participant responds. A frame then appears around the chosen card. 

This screen is shown for the remainder of 1500ms, i.e., for 1500ms minus the response time. Then, a 

feedback screen with either a picture of a 10-cents coin (wins), a picture of a 0-cents coin (neutral 

outcomes), or a picture of a minus 10-cents coin (losses) is shown for 500ms. Wins and neutral no-wins 

are available in the win condition and neutral no-loss and loss are available in the loss condition. Finally, 

participants see a fixation cross for a variable intertrial interval (mean 2500ms). A, lower panel – Reward 
contingencies. In the first 35 trials, the same stimuli each have a 20%- and 80%-win/loss probability, 

respectively. Their contingencies then reverse 5 times over the course of the task in a perfectly 
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anticorrelated manner, which requires participants to flexibly adapt their behavior in order to gain and 

avoid losing money. The task ends with another 35 trials, in which the reward contingencies no longer 

change. B – Post-task test: probabilistic selection task. Approximately 30 minutes after the PRLT, 

participants complete a short bonus task, in which the stimuli from both the win and the loss blocks and 

two novel stimuli (instructed as being neutral, i.e., yielding 0 cents outcomes) are presented in all 15 

possible pairings (3 times for each pair). Participants are instructed to try to earn as much and lose as 
little money as possible as before. No feedback is provided.  

The experiment was implemented in Psychtoolbox (3.0.13) using Octave (4.2.2). The 

PRLT was displayed on a white screen using a projector in the MRI, and on a monitor 

outside the MRI for training purposes. The same monitor was used to display the 

probabilistic selection task. 

2.3. Analysis of behavior – PRLT.   

We used trial-by-trial logistic mixed effects models to estimate accuracy (probability of 

choosing the currently more lucrative/less likely to lose card) and stay-switch behavior 

(probability of sticking with the same card as in the previous trial after positive and 

negative feedback), using the package glmer in R (version 4.1.0). As predictor 

variables, we included age (z-scored, per timepoint), condition (win vs. loss), and 

previous feedback (positive vs. negative) for stay-switch behavior. As an explorative 

analysis, we also looked at the effect of age on reaction times after positive and 

negative feedback, in the different conditions, using a linear mixed effects model. All 

our models employed a maximal random effects structure to the extent possible (Barr 

et al., 2013); we report the exact models in the supplement. Results were considered 

significant at p < .05, with p-values derived using Wald-Z tests in the case of GLMMs 

(as implemented in glmer) and Satterthwaite’s method (as implemented in the lmerTest 

package) in the case of LMMs. 

The task has different parts with stable or changing outcome probabilities, which can 

be captured in the regression models in different ways. Thus, models can differentiate 

between task phases (acquisition phase, i.e., the first 35 trials of each block, and 

reversal phase, i.e., the remaining trials; alternatively, stable phases, i.e., the first and 

last 35 trials, and reversal phase, i.e., the remaining trials) or between trial types (pre-

reversal trials, i.e., the trials leading up to a reversal, and post reversal trials, i.e., the 

5 trials directly following a reversal). We fit models including phase and trial type 

separately and compared them against each other as well as the simplest model 
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(without phase or trial-type) based on BICs. We report the results from the best fitting 

model (for model comparison, see Supplementary Table 1.).  

2.4. Analysis of behavior – Probabilistic selection task.  

Probabilistic stimulus selection tasks similar to the one we implemented have been 

analyzed in different ways. Thus, for example, Frank et al. (2004) calculated how often 

participants choose the best stimulus over the others and compared it to how often 

they avoid the worst stimulus, in novel pairs, to dissociate how well people learn from 

wins vs. losses. Palminteri et al., in a similar task, estimated the choice probability for 

each stimulus as a function of motivational context (obtain win vs. avoid loss) and 

whether or not the choice was “correct”, i.e., the one which is more likely to lead to a 

win / avoid a loss (Palminteri et al., 2016). The Frank approach is “nested” in the 

Palminteri approach in so far as a difference between the rate at which individuals 

choose the best and avoid the worst stimulus would emerge as an interaction between 

motivational context and “correctness” or accuracy. We therefore implemented a 

strategy akin to Palminteri’s, predicting choice rates of the known stimuli based on 

motivational context, accuracy, and age, adding another factor representing whether 

choices were between two known stimuli or between a known and a novel stimulus. 

2.5. Analysis of longitudinal development.   

Because it is conceivable that within-subject development effects differ depending on 

age (such that, for example, younger people change more from the first to the second 

assessment), we took models with significant age effects forward for further analysis 

in which we differentiated between cross-sectional (between-subject) age differences 

and longitudinal (within-subject) development. To do that, we included cross-sectional 

age variance (subjects’ mean age across timepoints, z-scored) and longitudinal age 

variance (the difference between subjects’ age at each time point and their individual 

mean age, z-scored) as separate variables in the model, where they were also allowed 

to interact (Neuhaus & Kalbfleisch, 1998; Vanes et al., 2020). Because these are post-

hoc, confirmatory analyses, we only included predictors that significantly interacted 

with age in these models.  

2.6. Computational modelling of behavior.   

In order to identify individual differences in processes underlying behavior in this task, 

we fit 12 different reinforcement learning models based on Q-Learning (Watkins & 

Dayan, 1992) to the data. For detailed descriptions (including equations), please refer 
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to the supplement. Parameter estimation was performed using empirical Bayesian 

estimation in an expectation maximization procedure, implemented in MATLAB 

R2020b using the emfit toolbox (Huys et al., 2011, 2012; Huys & Schad, 2015) (details 

in the supplement). We performed model selection on the estimated models based on 

the integrated Bayesian Information Criterion (Huys et al., 2012) in the entire sample 

as well as separately for adolescents (participants ≤18) and adults (participants >18) 

to make sure both groups were best fit by the same model. The best model (overall 

and in both groups) proved to be a full double update model with separate 

reinforcement sensitivities (𝜌) for positive and negative feedback, a single learning rate 

(𝛼) and a softmax decision policy (Eq. 1 through 3; p: probability, Q: expected value, 

a: action, t: trial).  

𝑝(𝑎!) =
"#$%&!"'

∑ "#$%&!#'
$
#%&

			 	 	 	 	 	 	 	 	 Eq. 1 

	𝑄),+,- = 𝑄),+ + 𝛼+𝜌,// ∗ 𝑟 − 𝑄),+/		 	 	 	 	 	 	 Eq. 2	

𝑄)'()*+,-(,+,- = 𝑄)'()*+,-(,+ + 𝛼 0+−𝜌,// ∗ 𝑟/ − 𝑄)'()*+,-(,+1	 	 	 	 Eq. 3 

We took this model forward for further analysis, computing linear mixed effects models 

to gauge the effects of age, condition, and feedback on the fitted parameters. To 

ascertain that any age effects were not driven by age-related differences in model fit 

at chance level, we repeated all analyses excluding individuals with chance fit. As for 

the raw behavior, we also re-ran models differentiating between cross-sectional age-

differences and longitudinal development where age effects came out significant.  

2.7. fMRI Preprocessing.   

For scanning sequences, please refer to the supplement. The fMRI data was 

preprocessed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12) in 

MATLAB 2020b. First, the functional and structural images’ origin was set to 

approximately the location of the anterior commissure in order to aid later co-

registration and normalization. The functional images were then slice-time corrected 

and voxel-displacement maps were computed based on the field maps. Subsequently, 

they were realigned and unwarped, accounting for motion, distortion, and the 

interaction between motion and distortion, and spatially normalized to MNI (Montreal 

Neurological Institute) space based on the normalization parameters generated during 
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the segmentation of each participant’s anatomical scan. Finally, they were smoothed 

using an isotropic Gaussian kernel of 8mm full width at half maximum. 

2.8. fMRI Analysis. 

Before 1st level statistical analysis, the data was high-pass filtered with a cut off at 

128s. We then applied event-related analyses using the general linear model 

implemented in SPM12, modeling feedback onsets, cue onsets, missing trials, and the 

6 movement parameters.  

Parametric modulators were constructed and added to the model as follows. First, we 

derived, for each individual, trial-by-trial prediction errors (PEs) from the fitted 

computational models. To be able to differentiate the neural representation of actual 

and inferred (counterfactual) feedback, we computed both single and double update 

prediction errors. For the former, we used the single update (SU) model with separate 

reinforcement sensitivities for positive and negative feedback and a single learning rate 

(corresponding to Eq. 1 and 2, without Eq. 3 above; see supplement for details). Note 

that we fixed the positive reinforcement sensitivity to 1 and the negative reinforcement 

sensitivity to -1 to have the prediction errors on the same scale (bounded between +1 

and -1), and to separate effects of the learning rate and reinforcement sensitivities. To 

capture the additional counterfactual information contained within prediction errors 

from the (winning) double update (DU) model, we generated trial-by-trial prediction 

errors from that model and subtracted the SU prediction errors (see Reiter et al., 2017 

for a similar approach). The SU and DU prediction errors were included as 

orthogonalized parametric modulators on the feedback regressor. Second, we 

generated trial-by-trial choice probabilities for each individual based on the fitted 

parameters of the winning double update model. The inferred choice probability is a 

function of the relative expected values of the two options and can be interpreted as 

confidence in the upcoming choice. Third, from the choice probabilities, we constructed 

a control regressor reflecting trial-by-trial model-fit, where choices predicted with 

below-chance accuracy (<50%) were coded as 1 and 0 otherwise. The choice 

probabilities and model-fit regressors were included as orthogonalized parametric 

modulators on the cue regressor. This was done for both conditions (win and loss 

block) in a single model, where each block was modeled as a separate session. The 

regressors were convolved with the canonical hemodynamic response function in 

SPM12. For the second level analyses, we estimated random effects ANOVAs on the 
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contrast images of the parametric modulators with a condition factor (win/loss block) 

and a covariate reflecting age. 

3. RESULTS 

In this section, we only report significant age effects in detail. For full results tables 

from all models reported below, please refer to the supplement. 

3.1. Behavior 

3.1.1. Accuracy.  

The trial-type model differentiating between trials leading up to and following reversals 

best accounted for the data (Supplementary Table 1). It revealed a significant age x 

trial-type interaction effect (OR = 0.87, z = -2.64, p = .008), such that older participants 

tend to be more accurate in pre-reversal and less accurate in post-reversal trials than 

younger participants (Fig.2 – A). Simple effects analysis revealed that the interaction 

was driven primarily by the positive effect of age on accuracy in pre-reversal trials and 

less so by the negative effect of age on accuracy in post-reversal trials.  

  

 Fig. 2. A – Predicted probability of choosing the more advantageous card, by age and trial-type, based 

on a generalized linear mixed effects model. Midnight-blue dots reflect accuracy in pre-reversal trials, 

steel-blue dots reflect accuracy in post-reversal trials. Correlation coefficients are between age and 

predicted values per trial-type. B – Predicted probability of staying with the same choice after negative 

feedback, by age and task phase, based on a generalized linear mixed effects model. Burgundy dots 

reflect switching in the acquisition phase of the task, rose dots reflect switching in the reversal phase. 

Correlation coefficients are between age and predicted values for each task phase. C – Predicted choice 
rates in the probabilistic selection task following the PRLT for known over novel stimuli, based on a 

linear mixed effects model. In all plots, there are up to two dots per person and color: one reflecting the 

initial session, one the follow up session (where data was available).   

3.1.2. Stay-Switch-Behavior.  

The phase model differentiating between the acquisition phase and the remainder of 

trials best accounted for the data (Supplementary Table 1). It revealed a four-way 
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interaction between age, phase, condition, and previous feedback (OR = 0.95, z = -

2.95, p = .003) in addition to a three-way interaction between age, phase, and condition 

(OR = 0.96, z = -2.11, p = .04), a three-way interaction between age, previous feedback 

and phase (OR = 1.05, z = 2.76, p = .006), and a main effect of age (OR = 1.22, z = 

2.17, p = .03). Unpacking this, simple effects analyses showed an age by phase 

interaction for staying after negative feedback, which was driven by a stronger positive 

effect of age in the acquisition than the reversal phase (Fig.2 – B). There were no 

condition-specific age effects on staying after negative feedback. Further simple 

effects analyses looking at staying after positive feedback showed that age had no 

effect during the acquisition phase of the loss condition and only marginal effects in 

the other conditions and phases (s. Supplementary Fig.1 and associated tables). Given 

that the effect of age on staying after positive feedback was not significant in any phase 

or condition, we refrain from interpreting it.  

3.1.3. Explorative – reaction times.  

The phase model differentiating between acquisition phase and the remainder of trials 

best accounted for the data (Supplementary Table 1). It revealed an interaction 

between age and previous feedback (𝛽 = -0.03, t(45897) = -3.32, p < .001), such that 

older participants responded faster than younger participants, in particular after  

positive feedback.  

3.1.4. Probabilistic selection task.   

Our model predicting the choice rate for each stimulus based on motivational context 

(i.e., win or loss stimulus in the PRLT), accuracy (i.e., better or worse stimulus in the 

PRLT), pairing (choice against a known or a novel stimulus) and age showed a main 

effect of motivational context (𝛽 = 0.05, t(1288) = 4.203, p < .001), such that 

participants more often chose stimuli from the win than from the loss block, as well as 

an interaction between age and pairing (𝛽 = 0.0474, t(1288) = 5.0189, p < .001), such 

that when faced with a known and an novel stimulus, younger participants more often 

chose the novel stimulus (regardless of motivational context) than older participants 

(s. Fig.2 – C).  

3.2. Computational Modelling 

3.2.1. RL model selection.  
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A full double update model with separate reinforcement sensitivities for positive and 

negative feedback and a single learning rate had the best evidence (lowest integrated 

BIC = 30,261, distance to next lowest ΔBIC = 209) across the whole sample, as well 

as in adolescents (participants ≤18) and adults (participants >18) considered 

separately (Supplementary Figures 3 through 5). This model updates the values for 

the chosen and unchosen options to the same extent (double update) and equally fast 

after positive and negative feedback (single learning rate), but allows for differential 

impact of positive and negative feedback on expected values and choices (separate 

reinforcement sensitivities for positive and negative feedback).  

3.2.2. RL parameters – reinforcement sensitivity.  

A linear mixed effects model predicting reinforcement sensitivity parameter values from 

age, feedback and condition revealed an interaction between age and previous 

feedback (𝛽 = 0.11, t(672) = 2.5862, p = .01), such that older participants were more 

sensitive to positive but not negative feedback. This did not change when we excluded 

individuals fit at or below chance level. In an explorative analysis, we compared 

parameters from the single and double update models, showing that under the single 

update model, there was an age effect on both positive and negative feedback 

sensitivity. This suggests that the specificity to positive feedback is a feature of the 

double update model (refer to the supplement for details). 

 

 
Fig. 3. A – Reinforcement sensitivity (averaged across conditions), by age and feedback. There are up 

to two dots per plot and person: one reflecting the learning rate in the initial session, one in the follow 

up session (where data was available). Left panel: reinforcement sensitivity for positive feedback; right 
panel: reinforcement sensitivity for negative feedback. The correlation coefficients reflect the 
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relationship between sensitivity values and age. B – Learning rate (averaged across conditions), by age. 

The correlation coefficient reflects the relationship between learning rates and age 

3.2.3. RL parameters – learning rate. 

A linear mixed effects model predicting the learning rate from age and condition 

revealed no effects of age (all p > .39). This did not change when we excluded 

individuals fit at or below chance level.  

3.2.4. RL recovery and posterior predictive checks. 

In order to ensure that the model fit our subjects’ behavior well on a qualitative level, 

we simulated 100 datasets based on the fitted model parameters of each subject. The 

recovered data generally captured the participants’ parameters well and reproduced 

the observed effects of age (Supplementary Figures 6 and 7). 

3.3. Differential contributions of within- and between-subject development. 

Given that within-subject development effects may differ depending on age, we 

repeated all our analyses differentiating between (cross-sectional) age-differences and 

(longitudinal) development. The results suggest that the age effects reported above 

were driven primarily by cross-sectional variance (for detailed results, please refer to 

the supplement). 

3.4. fMRI 

3.4.1. Prediction error coding.   

As expected based on previous studies (e.g., Abler et al., 2006; McClure et al., 2004; 

O’Doherty et al., 2007), participants showed robust correlations between prediction 

errors derived from the single update model and BOLD signals in the striatum at the 

group level (Fig. 4, top row, full results tables in supplement). Prediction errors 

incorporating counterfactual information (derived from the double-update model) were 

coded mostly in the vmPFC, hippocampus and PCC (Fig. 4, middle row, full results 

tables in supplement). There was no evidence of age differences in single or double 

update prediction error coding, and neither changed depending on condition 

(motivational context). 
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Fig. 4. Group-level (positive) effects of regressors derived from computational modelling. A – 
prediction errors derived from a single update RL-model. B – additional (counterfactual) information 
incorporated in double update prediction errors (calculated as the difference between PEs derived 
from the double and single update models). C – choice probability as derived from the double update 
model. All maps are thresholded at pFWE < .05 (no minimum cluster size). Blob colors represent t-
values. 

 

3.4.2. fMRI – Choice probability coding. 

At the group level, trial-by-trial choice probability was correlated positively with BOLD 

signal in the (v)mPFC and PCC (Fig. 4, bottom row, full results tables in supplement). 

Choosing an option not predicted by our reinforcement learning model (predicted 

choice probability of <=.5) was correlated with activation in the bilateral insula, dorsal 
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ACC, and premotor areas (full results tables in supplement). There were no effects of 

condition on the neural coding of either choice probability or trial-by-trial model fit.  

The positive neural correlate of choice probability (i.e., chosing the option that was 

suggested to be the better one by the DU model) was modulated by age in the medial 

prefrontal cortex/frontal pole, such that older participants showed stronger neural 

representation of choice probability in this area (Fig. 5 – A, [-4,64,12], k=17, t = 3.51, 

pFWE = .03, small-volume corrected using the group-level activation map). Next, we 

looked at brain-behaviour relationships related to this age effect of choice probability 

coding in the medial frontal pole. Indeed, parameter values extracted at the peak 

coordinate correlated significantly with staying after negative feedback and preference 

for known over novel stimuli in the post-task test (Fig. 5 – B).  

 

Fig. 5. A – Association between the positive neural correlates of model-predicted choice probability and 
age. Blob colors represent t-contrast values, thresholded at p<.001 uncorrected for visualization.  B – 



 18 

left panel. Correlation between parameters at the cluster peak ([-4,64,12]) and staying after negative 

feedback. B – right panel. Correlation between parameters at the cluster peak ([-4,64,12]) and choices 

for known over unknown stimuli in the post-task test. Outliers > 3 standard deviations from the mean 

were removed before plotting. 

 

4. DISCUSSION  

In this study, we show that performance during stable phases of the probabilistic 

reversal learning task, i.e., prior to reversals, improves linearly with age. Our results 

indicate that this is driven by excessive response switching following negative 

feedback. Computationally, this could be accounted for by lower sensitivity to positive 

feedback in younger participants: thus, in younger participants, positive feedback had 

less of an impact on the expected values of the two choice options (and the difference 

between them), such that negative feedback in subsequent trials induced switching 

more readily. In the brain, there was no evidence of differences in reward prediction 

error coding between adolescents and adults. However, reduced sensitivity to positive 

feedback was reflected in diminished activation of the medial frontopolar cortex as a 

function of choice probability in youths. Interestingly, we found no age-related 

differences between learning in win and loss contexts, nor differences in the extent to 

which adolescents and adults used inferred counterfactual feedback, in either behavior 

or fMRI. 

Our behavioral results are in line with evidence showing similarly enhanced switching 

(less win/stay and/or more lose/shift behavior) (Crawley et al., 2020; Javadi et al., 

2014; Van Den Bos et al., 2009) and greater choice stochasticity/reduced feedback 

sensitivity (Christakou et al., 2013; Crawley et al., 2020; Decker et al., 2015; Javadi et 

al., 2014; Moutoussis et al., 2021; Rodriguez Buritica et al., 2019; although see 

Davidow et al., 2016) in younger (adolescent) individuals. We extend this literature by 

differentiating between sensitivity to positive and negative feedback. Thus, we provide 

evidence that enhanced switching behavior might be computationally accounted for by 

insufficient sensitivity to positive feedback rather than enhanced sensitivity to negative 

feedback or overall lower feedback sensitivity. This interpretation is supported by our 

explorative analysis of reaction times: congruent with previous research (Decker et al., 

2016b; Eckstein et al., 2021), it shows that younger participants respond more slowly 

than older participants, especially after positive feedback. According to drift-diffusion 

accounts (McDougle & Collins, 2021; Mormann et al., 2010; Pedersen et al., 2017), it 
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takes longer to sample noisy information. Hence, this may be indicative of relatively 

elevated uncertainty as to the value of choice options our younger participants, which 

has previously been shown to decrease across adolescence (Reiter et al., 2021).  

Moreover, we point to a neural correlate of these behavioral effects, showing reduced 

coding of trial-by-trial choice probability in the medial frontopolar cortex in youth. This 

signal can be read as confidence in an upcoming choice and was associated with key 

behavioral readouts, i.e., switching after negative feedback and the relative preference 

for known over novel stimuli in a post-task test. The medial frontopolar cortex has 

previously been implicated in tracking choice probabilities (Daw et al., 2006). It has 

been proposed to be involved in arbitrating between exploration and exploitation, 

specifically by monitoring the relative value of current behavior and triggering 

exploration (Mansouri et al., 2017). In line with this role, the medial PFC’s connectivity 

has been shown to be associated with choice stochasticity (Moutoussis et al., 2021). 

In this sense, the involvement of this region supports our interpretation that reduced 

sensitivity to feedback, and consequently relative value, might drive adolescent over-

switching in the PRLT. Importantly, this region and its connectivity, along with other 

regions of the PFC, are known to mature substantially and asymmetrically relative to 

subcortical structures in adolescence (Casey et al., 2008; Dahl et al., 2018; Dumontheil 

et al., 2008). 

Our behavioral findings may thus be associated with the stage of development of the 

adolescent brain (although we do not explicitly test this). Alternatively or 

epiphenomenally, it might reflect an adaptive response to adolescents’ specific (social) 

environment. Thus, adolescents’ choice behavior may be uniquely adapted towards 

navigating environments full of novel stimuli and volatile affordances (Eckstein et al., 

2021; Hartley & Somerville, 2015). Reduced sensitivity to positive feedback allows for 

rapid and flexible responses in case reward contingencies change or new opportunities 

arise. In our task, this is not always helpful as most trials occur in relatively stable 

phases, where exploration comes at a steep performance cost. But the (social) 

environment of youths might be (perceived as) one in which reward contingencies arise 

and change rapidly and unpredictably. In such environments, exploration and 

continuous readiness to modify behavior is the most optimal course of action. 

Consistent with this, younger participants more frequently chose new over known 

stimuli (regardless of whether the known stimuli were win or loss stimuli) in a post-task 

test, indicating increased novelty-seeking. 
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Interestingly, our analysis suggested that both adolescents’ and adults’ task behavior 

was best fit by a model incorporating full counterfactual inference. This is somewhat 

surprising, since counterfactual learning relies on the utilization of inferred knowledge 

about the environment, which has been found to increase from adolescence to 

adulthood (Decker et al., 2016a; Palminteri et al., 2016). In addition, this process is 

thought to primarily recruit prefrontal brain structures, which are known to exhibit 

protracted development well into adulthood (Casey et al., 2008). At the same time, two 

previous studies on probabilistic reversal learning in youths similarly reported model 

selection favoring double update models (Eckstein et al., 2021; Hauser et al., 2015; 

but see Boehme et al., 2017 for evidence of effects of pubertal status). This suggests 

that comparatively simple counterfactual inference might already be nearly fully 

functional in adolescents, even though they might not always be able to optimally use 

it. In the future, more sophisticated methods to investigate counterfactual learning 

(e.g., Boorman et al., 2011; Li & Daw, 2011) may be helpful to precisely characterize 

its development. 

Contrary to our hypotheses, we found no differential effects of motivational context 

across the age range. Instead, our data suggests that participants of all ages found the 

win condition “easier”. Thus, participants switched less and responded more quickly in 

the win condition than the loss condition. In line with this, the computational modelling 

showed clear condition effects on both the reinforcement sensitivities and the learning 

rate, such that parameters were more optimal (more extreme sensitivities and learning 

rates) in the win condition. The observed absence of interactions between age and 

motivational context is somewhat at odds with evidence of enhanced reward sensitivity 

in adolescents (Somerville et al., 2010; Somerville & Casey, 2010) as well as previous 

evidence of altered performance in loss contexts (Palminteri et al., 2016; although see 

Bolenz & Eppinger, 2022). It is possible that such effects are subtle and our study was 

insufficiently powered to detect them; alternatively, heighted reward sensitivity in 

adolescence might not straightforwardly translate to differential learning from wins and 

losses. Further studies disentangling feedback valence and motivational context will 

be needed to clarify this point. 

Differential analyses looking into interactions between age and longitudinal change 

showed little within-subject development and suggested that the age effects we did 

observe primarily stemmed from between-subject differences. Future studies should 

attempt to distill within-subjects development and its interaction with age by sampling 
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from a narrower age range (e.g., Ziegler et al., 2019) and/or extending the follow up 

interval.  

In conclusion, the current study adds to a growing body of evidence showing that the 

development of reinforcement learning from adolescence to adulthood is characterized 

by decreasing novelty seeking and response shifting, especially after negative 

feedback, leading to poorer returns in environments with stable reward contingencies 

in youths. We show that this can be computationally accounted for by increasing 

sensitivity to positive feedback. The behavioral effects were linked to diminished 

activity of the medial frontopolar cortex reflecting trial-by-trial choice probability in 

adolescents, putatively reflecting confidence in the upcoming choice. Future studies 

should further elucidate the exact time course and the drivers of normative RL 

development, both proximal (what are the underlying cognitive processes?) and 

ontogenic (what are the underlying psychobiological maturation processes?), to 

identify vulnerable periods in which disruption could cause future mental health 

problems.     
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5. Data and Code availability 

The raw behavioral data and analysis scripts underlying the analyses in this article are 

available on the Open Science Framework (https://osf.io/ptxs6). 
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