6,326 research outputs found
A new result on the Klein-Gordon equation in the background of a rotating black hole
This short paper should serve as basis for further analysis of a previously
found new symmetry of the solutions of the wave equation in the gravitational
field of a Kerr black hole. Its main new result is the proof of essential
self-adjointness of the spatial part of a reduced normalized wave operator of
the Kerr metric in a weighted L^2-space. As a consequence, it leads to a purely
operator theoretic proof of the well-posedness of the initial value problem of
the reduced Klein-Gordon equation in that field in that L^2-space and in this
way generalizes a corresponding result of Kay (1985) in the case of the
Schwarzschild black hole. It is believed that the employed methods are
applicable to other separable wave equations
Approach to equilibrium in adiabatically evolving potentials
For a potential function (in one dimension) which evolves from a specified
initial form to a different asymptotically, we study the
evolution, in an overdamped dynamics, of an initial probability density to its
final equilibeium.There can be unexpected effects that can arise from the time
dependence. We choose a time variation of the form
. For a , which is
double welled and a which is simple harmonic, we show that, in
particular, if the evolution is adiabatic, the results in a decrease in the
Kramers time characteristics of . Thus the time dependence makes
diffusion over a barrier more efficient. There can also be interesting
resonance effects when and are two harmonic potentials
displaced with respect to each other that arise from the coincidence of the
intrinsic time scale characterising the potential variation and the Kramers
time.Comment: This paper contains 5 page
Design and implementation of an electro-optical backplane with pluggable in-plane connectors
The design, implementation and characterisation of an electro-optical
backplane and an active pluggable in-plane optical connector technology
is presented. The connection architecture adopted allows line cards to
be mated to and unmated from a passive electro-optical backplane with
embedded polymeric waveguides. The active connectors incorporate a
photonics interface operating at 850 nm and a mechanism to passively
align the interface to the optical waveguides embedded in the backplane.
A demonstration platform has been constructed to assess the viability of
embedded electro-optical backplane technology in dense data storage
systems. The demonstration platform includes four switch cards, which
connect both optically and electronically to the electro-optical backplane
in a chassis. These switch cards are controlled by a single board
computer across a Compact PCI bus on the backplane. The electrooptical
backplane is comprised of copper layers for power and low speed
bus communication and one polymeric optical layer, wherein waveguides
have been patterned by a direct laser writing scheme. The optical
waveguide design includes densely arrayed multimode waveguides with
a centre to centre pitch of 250μm between adjacent channels, multiple
cascaded waveguide bends, non-orthogonal crossovers and in-plane
connector interfaces. In addition, a novel passive alignment method
has been employed to simplify high precision assembly of the optical
receptacles on the backplane. The in-plane connector interface is based
on a two lens free space coupling solution, which reduces susceptibility
to contamination. Successful transfer of 10.3 Gb/s data along multiple
waveguides in the electro-optical backplane has been demonstrated and
characterised
Solvates, salts, and cocrystals : a proposal for a feasible classification system
The design of pharmaceutical cocrystals has initiated widespread debate on the classification of cocrystals. Current attempts to classify multicomponent crystals suffer from ambiguity, which has led to inconsistent definitions for cocrystals and for multicomponent crystals in general. Inspired by the work of Aitipamula et al. (Cryst. Growth Des. 2012, 12, 2147-2152), we present a feasible classification system for all multicomponent crystals. The present classification enables us to analyze and classify multicomponent crystal structures present in the Cambridge Structural Database (CSD). This reveals that all seven classes proposed are relevant in terms of frequency of occurrence. Lists of CSD refcodes for all classes are provided. We identified over 5000 cocrystals in the CSD, as well as over 12 000 crystals with more than two components. This illustrates that the possibilities for alternative drug formulations can be increased significantly by considering more than two components in drug design
GRB 030329: 3 years of radio afterglow monitoring
Radio observations of gamma-ray burst (GRB) afterglows are essential for our
understanding of the physics of relativistic blast waves, as they enable us to
follow the evolution of GRB explosions much longer than the afterglows in any
other wave band. We have performed a three-year monitoring campaign of GRB
030329 with the Westerbork Synthesis Radio Telescopes (WSRT) and the Giant
Metrewave Radio Telescope (GMRT). Our observations, combined with observations
at other wavelengths, have allowed us to determine the GRB blast wave physical
parameters, such as the total burst energy and the ambient medium density, as
well as investigate the jet nature of the relativistic outflow. Further, by
modeling the late-time radio light curve of GRB 030329, we predict that the
Low-Frequency Array (LOFAR, 30-240 MHz) will be able to observe afterglows of
similar GRBs, and constrain the physics of the blast wave during its
non-relativistic phase.Comment: 5 pages, 2 figures, Phil. Trans. R. Soc. A, vol.365, p.1241,
proceedings of the Royal Society Scientific Discussion Meeting, London,
September 200
A Multiple Classifier System Identifies Novel Cannabinoid CB2 Receptor Ligands
open access articleDrugs have become an essential part of our lives due to their ability to improve people’s
health and quality of life. However, for many diseases, approved drugs are not yet available
or existing drugs have undesirable side effects, making the pharmaceutical industry strive to
discover new drugs and active compounds. The development of drugs is an expensive
process, which typically starts with the detection of candidate molecules (screening) for an
identified protein target. To this end, the use of high-performance screening techniques has
become a critical issue in order to palliate the high costs. Therefore, the popularity of
computer-based screening (often called virtual screening or in-silico screening) has rapidly
increased during the last decade. A wide variety of Machine Learning (ML) techniques has
been used in conjunction with chemical structure and physicochemical properties for
screening purposes including (i) simple classifiers, (ii) ensemble methods, and more recently
(iii) Multiple Classifier Systems (MCS). In this work, we apply an MCS for virtual screening
(D2-MCS) using circular fingerprints. We applied our technique to a dataset of cannabinoid
CB2 ligands obtained from the ChEMBL database. The HTS collection of Enamine
(1.834.362 compounds), was virtually screened to identify 48.432 potential active molecules
using D2-MCS. This list was subsequently clustered based on circular fingerprints and from
each cluster, the most active compound was maintained. From these, the top 60 were kept,
and 21 novel compounds were purchased. Experimental validation confirmed six highly
active hits (>50% displacement at 10 μM and subsequent Ki determination) and an
additional five medium active hits (>25% displacement at 10 μM). D2-MCS hence provided a
hit rate of 29% for highly active compounds and an overall hit rate of 52%
Structure of the ovaries of the Nimba otter shrew, Micropotamogale lamottei, and the Madagascar hedgehog tenrec, Echinops telfairi
The otter shrews are members of the subfamily Potamogalinae within the family Tenrecidae. No description of the ovaries of any member of this subfamily has been published previously. The lesser hedgehog tenrec, Echinops telfairi, is a member of the subfamily Tenrecinae of the same family and, although its ovaries have not been described, other members of this subfamily have been shown to have ovaries with non-antral follicles. Examination of these two species illustrated that non-antral follicles were characteristic of the ovaries of both species, as was clefting and lobulation of the ovaries. Juvenile otter shrews range from those with only small follicles in the cortex to those with 300- to 400-mu m follicles similar to those seen in non-pregnant and pregnant adults. As in other species, most of the growth of the oocyte occurred when follicles had one to two layers of granulosa cells. When larger follicles became atretic in the Nimba otter shrew, hypertrophy of the theca interna produced nodules of glandular interstitial tissue. In the tenrec, the hypertrophying theca interna cells in most large follicles appeared to undergo degeneration. Both species had some follicular fluid in the intercellular spaces between the more peripheral granulosa cells. It is suggested that this fluid could aid in separation of the cumulus from the remaining granulosa at ovulation. The protruding follicles in lobules and absence of a tunica albuginea might also facilitate ovulation of non-antral follicles. Ovaries with a thin-absent tunica albuginea and follicles with small-absent antra are widespread within both the Eulipotyphla and in the Afrosoricida, suggesting that such features may represent a primitive condition in ovarian development. Lobulated and deeply crypted ovaries are found in both groups but are not as common in the Eulipotyphla making inclusion of this feature as primitive more speculative. Copyright (C) 2005 S. Karger AG, Basel
- …