7 research outputs found

    The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges

    Full text link

    Coupling of activation and inactivation gate in a K+-channel: potassium and ligand sensitivity

    No full text
    Potassium (K+)-channel gating is choreographed by a complex interplay between external stimuli, K+ concentration and lipidic environment. We combined solid-state NMR and electrophysiological experiments on a chimeric KcsA–Kv1.3 channel to delineate K+, pH and blocker effects on channel structure and function in a membrane setting. Our data show that pH-induced activation is correlated with protonation of glutamate residues at or near the activation gate. Moreover, K+ and channel blockers distinctly affect the open probability of both the inactivation gate comprising the selectivity filter of the channel and the activation gate. The results indicate that the two gates are coupled and that effects of the permeant K+ ion on the inactivation gate modulate activation-gate opening. Our data suggest a mechanism for controlling coordinated and sequential opening and closing of activation and inactivation gates in the K+-channel pore

    Inhibition of Kv2.1 Potassium Channels by MiDCA1, A Pre-Synaptically Active PLA2-Type Toxin from Micrurus dumerilii carinicauda Coral Snake Venom

    No full text
    MiDCA1, a phospholipase A2 (PLA2) neurotoxin isolated from Micrurus dumerilii carinicauda coral snake venom, inhibited a major component of voltage-activated potassium (Kv) currents (41 ± 3% inhibition with 1 μM toxin) in mouse cultured dorsal root ganglion (DRG) neurons. In addition, the selective Kv2.1 channel blocker guangxitoxin (GxTx-1E) and MiDCA1 competitively inhibited the outward potassium current in DRG neurons. MiDCA1 (1 µM) reversibly inhibited the Kv2.1 current by 55 ± 8.9% in a Xenopus oocyte heterologous system. The toxin showed selectivity for Kv2.1 channels over all the other Kv channels tested in this study. We propose that Kv2.1 channel blockade by MiDCA1 underlies the toxin’s action on acetylcholine release at mammalian neuromuscular junctions

    A structural link between inactivation and block of a K+ channel.

    No full text
    International audienceGating the ion-permeation pathway in K(+) channels requires conformational changes in activation and inactivation gates. Here we have investigated the structural alterations associated with pH-dependent inactivation gating of the KcsA-Kv1.3 K(+) channel using solid-state NMR spectroscopy in direct reference to electrophysiological and pharmacological experiments. Transition of the KcsA-Kv1.3 K(+) channel from a closed state at pH 7.5 to an inactivated state at pH 4.0 revealed distinct structural changes within the pore, correlated with activation-gate opening and inactivation-gate closing. In the inactivated K(+) channel, the selectivity filter adopts a nonconductive structure that was also induced by binding of a pore-blocking tetraphenylporphyrin derivative. The results establish a structural link between inactivation and block of a K(+) channel in a membrane setting

    Neuronal metabotropic glutamate receptor 8 protects against neurodegeneration in CNS inflammation

    No full text
    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system with continuous neuronal loss. Treatment of clinical progression remains challenging due to lack of insights into inflammation-induced neurodegenerative pathways. Here, we show that an imbalance in the neuronal receptor interactome is driving glutamate excitotoxicity in neurons of MS patients and identify the MS risk-associated metabotropic glutamate receptor 8 (GRM8) as a decisive modulator. Mechanistically, GRM8 activation counteracted neuronal cAMP accumulation, thereby directly desensitizing the inositol 1,4,5-trisphosphate receptor (IP3R). This profoundly limited glutamate-induced calcium release from the endoplasmic reticulum and subsequent cell death. Notably, we found Grm8-deficient neurons to be more prone to glutamate excitotoxicity, whereas pharmacological activation of GRM8 augmented neuroprotection in mouse and human neurons as well as in a preclinical mouse model of MS. Thus, we demonstrate that GRM8 conveys neuronal resilience to CNS inflammation and is a promising neuroprotective target with broad therapeutic implications

    The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges

    Get PDF
    SSCI-VIDE+ATARI:CARE+BNO:BDAInternational audienc
    corecore