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1. Introduction 

The Earth’s atmosphere offers a striking contrast with other planets or other environments in the 

universe by its rich organic composition, which results almost exclusively from the presence of 

life on the planet. About 2000 Tg/yr of organic compounds are estimated to be emitted into the 

atmosphere as gases, another 300 Tg/yr as particulate matter (aerosols), and a smaller, yet non-

estimated, fraction is dissolved in cloud or fog droplets. While these quantities represent only a 

few percent of the total carbon budget, dominated by CO2, they represent a diversity of 104 to 105 

distinct compounds,1 which play essential roles in many atmospheric processes. The importance 

of organic gases (or Volatile Organic Compounds, VOCs) in air quality and tropospheric ozone 

formation was recognized as early as the 1950’s,2 while their role in the atmospheric radical cycles 

was evidenced in the 1970’s.3 Then, their role as precursors for secondary organic aerosols (SOAs) 

started to be unveiled in the 1980’s and 1990’s and, for the last two decades, their contribution to 

the Earth’s radiative budget, through their optical and cloud-forming properties, has been 

discussed and is progressively taken into account in the projections of the Intergovernmental Panel 

for Climate Change (IPCC). This growing realization of the importance of these compounds in the 

atmosphere has been accompanied by an exponential increase of the research activities and 

scientific articles on this subject, making of organic compounds a main research area in 

atmospheric science today. 

To a large extent, understanding the processes involving organic compounds in the atmosphere 

depends on how well these compounds are identified. But obtaining this information for 

atmospheric samples involves a number of challenges, such as their collection, separation, de-

coupling of meteorological and chemical processes, small masses, complex mixtures, and low 

concentrations of individual compounds. New instruments have thus been developed and 
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analytical techniques from other disciplines modified to overcome these problems. These efforts 

started slowly in the 1970’s and 1980’s but have undergone a tremendous evolution over the last 

decades. This review presents a state-of-the-art account of this rapidly expanding field of 

atmospheric organic compound identification. In particular, it presents an overview of the core 

concepts in analytical chemistry and provides guidelines and recommendations on the 

performances and limits of different techniques that are aimed at the wide range of scientists with 

diverse backgrounds studying these questions today (physicists, meteorologists, chemists, 

biologists, engineers, etc).  

Chapter 2 of this review introduces the main definitions related to molecular identification, and 

discusses the different degrees of identification required by atmospheric problems or offered by 

techniques. Chapter 3 presents the strategies to ensure the quality of the analyses in atmospheric 

sciences. Chapter 4 summarizes the different techniques available today or under development to 

characterize atmospheric organic compounds and their various levels of identification. Chapter 5 

presents current key questions involving organic compounds in atmospheric science and 

approaches to solve them. Finally, Chapter 6 summarizes the main trends, current challenges, and 

potential future directions of this field of research. 

2. Definitions and application to the atmosphere 

2.1. Molecular identification: definitions 

Before discussing organic identification in atmospheric chemistry and how to achieve it, it is 

important to give some definitions. An organic compound is fully identified only if its molecular 

structure is entirely known, including its isomeric and spatial (stereo) configuration. While this 

information can be obvious for small molecules (C1, C2) it becomes increasingly challenging to 

obtain as their size and molecular weight (MW) increase. Furthermore, full structural identification 
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usually requires different types of analyses, such as some focusing on the molecular composition 

and others on the structure.  

Scientific societies such as the International Union for Pure and Applied Chemistry (IUPAC), 

the American Chemical Society (ACS), the American Society for Mass Spectrometry (ASMS), 

and journals thus require the identity of isolated organic compounds to be supported by a minimum 

of two types of information, such as the molecular weight and the structure. An additional 

challenge in environmental sciences is to identify organic compounds present in complex mixtures. 

The most common method employed to solve this problem is chromatographic separation, which, 

combined with comparison of their chromatographic and mass spectrometric behaviors with those 

of reference compounds (or standards), can also lead to unambiguous identification. 

As discussed in Chapter 4.2.3, the MW of a compound is the basis to determine its molecular 

formula, by comparison with the exact weights of various theoretical formulae. The number of 

matching theoretical formulae depends on the accuracy with which the measured MW is 

determined and increases exponentially with MW. Knowing the elements present in the molecule, 

for instance that they are limited to C, H, O, S and N, reduces the number of matching formulae. 

Scientific societies, in particular the ASMS have thus established that a molecular formula is 

elucidated if the accuracy on the measured MW corresponds to a single matching formula. Thus, 

in the absence of other complementary information, current high-resolution MS techniques can 

only identify a formula for compounds up to 300 ‒ 350 g mol‒1.1 Beyond this, and in some cases 

for lower MW,4 the identification requires additional information such as isotopic composition or 

fragmentation (tandem MS). As explained above, chromatographic separation and comparison of 

their chromatographic and mass spectrometric behaviors with those of authentic standards also 
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solve these problems. In this case, the comparison between the compounds in the sample and 

authentic standards must be made with sufficient accuracy.  

Beside the elemental composition given by the molecular formula, the full spatial structure of 

organic compounds, i.e., their different isomers or spatial configurations, can be obtained from 

NMR techniques (Chapter 4.1), or tandem MS (Chapter 4.2.3) (successive fragmentation of the 

precursor ion). Chromatographic methods and comparison with an authentic standard can also 

provide full structural information if suitable standards are available (i.e., in the form of specific 

isomers). The full structural identification of an unknown molecule is therefore a considerable 

analytical challenge, especially in complex environmental samples. 

2.2. Describing the level of identification: factor “I” 

Not all atmospheric problems require the full identification of organic compounds. Intermediate 

levels of identification exist, focusing on specific classes of compounds or functional groups, and 

which can be sufficient to answer many atmospheric problems. In this review the level of 

identification required by a problem or offered by a technique will be described by a “Factor I” 

defined as:  

I = number of possible molecules matching the information requested or measured by a specific 

analytical technique. 

Thus by definition full identification is equivalent to I = 1. However if a compound has two or 

more isomers that are not separated then I = 2 or higher. For instance, the 2-methyltetrols, which 

have been found in many aerosols and were proposed as secondary products of isoprene have 

isomers (diastereoisomers), 2-methylerythritol and 2-methylthreitol, each of them having two 

enantiomers (mirror-image isomers). Thus, the exact MW of these compounds identifies them with 

only I = 4. Using non-chiral gas chromatography (GC) columns can separate the two isomers, thus 
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identify them with I = 2.5 Finally, separation on chiral columns can distinguish each enantiomer 

and identify them with I = 1.6 Typically, for a compound with a MW determined by MS I = number 

of molecules matching MW  number of possible isomers and spatial configurations. By contrast, 

optical spectroscopies generally result in the identification of organic compounds with large I 

factors. For example, the analysis of mixtures from secondary organic aerosol products by infrared 

(IR) spectroscopy only gives the relative distribution and temporal evolution of functional groups.7 

While this provides some overall information on the bulk composition, no structural information 

on specific compounds can be derived. Similarly, with MS using hard ionization techniques such 

as electron ionization with 70 eV electrons the very large number of fragments introduce large 

uncertainties in the determination of the MW of specific compounds and for the identification of 

their structure. 

Factor I will be used throughout this review to describe the levels of identification offered by 

different techniques (Chapter 4) or required by specific atmospheric problems (Chapter 5).  

2.3. How well do atmospheric organic compounds need to be known? 

Trying to identify all the organic compounds present in the atmosphere would not only be a 

staggering task but also largely redundant as many problems can be solved with only a partial 

knowledge of these compounds. Different type of problems, corresponding to different levels of 

information, can be distinguished. 

Inventorying compounds according to their properties (I  100). The first type of problem 

is when organic compounds need to be inventoried for the purpose of establishing a budget. 

Generally, such budgets are required to gain insights into specific properties of the compounds, 

such as their optical properties for the global energy budget or their volatility for SOA precursors. 

In such cases the organic compounds do not need to be individually identified but their effects 
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only quantified based on this common property. These questions can thus be solved by performing 

functional group analyses (Chapter 4.1), which would provide identification with I  100 (probably 

even  1000).  

Capturing chemistry in a turbulent atmosphere: real-time monitoring (10  I  100). A 

common problem in atmospheric chemistry is the investigation of chemical processes or sources 

in a rapidly changing environment (boundary layer height changes or influence of different air 

masses). This type of problem does not necessarily require the full identification of the organic 

compounds either but demands that the analytical techniques characterize organic compounds on 

time scales of seconds to minutes. For this purpose, “on-line” instruments have been developed to 

monitor gaseous or particulate organic compounds in real-time (Chapter 4.2.1). In spite of the fast 

measurement frequencies, the identification of gases with such techniques can be adequate when 

combined with high-resolution MS techniques (I 10 with proton transfer (PTR) – time-of-flight 

(TOF) MS, Chapter 4.1). Some real-time aerosol measurements however use hard ionization 

techniques (Chapter 4.1), resulting in extensive fragmentation and precluding in-depth 

identification of the organic compounds (I 100). 

Monitoring known processes or sources: relative identification (I 10). A category of 

problems requiring a higher level of knowledge of the organic compounds is when known 

processes (for instance, chemical reactions) or sources need to be monitored or quantified in a 

given region of the atmosphere. An example is the quantification of the SOA mass resulting from 

one specific precursor, such as isoprene or -pinene, at a given site. The approach usually 

employed consists in monitoring a few compounds that are unique to these processes or sources, 

called “markers” (Chapter 3). The compounds present in the atmospheric samples do not need to 

be fully identified but only have to match the properties of the reference compound characterized 
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in laboratory. Such comparisons are often carried out by chromatographic methods (Chapter 4.2.2) 

whereby the chromatographic and mass spectrometric behaviors of the targeted and reference 

compounds are compared. For small compounds an identification based solely on direct MS can 

be considered, provided that sufficient resolution can be achieved. However, such an approach 

does not warrant the full identification of a compound, as the technique used does not necessarily 

distinguish between different stereo- and positional isomers. 

Identifying unknown processes or sources: full identification (I 2-3). Atmospheric 

problems for which organic compounds need to be fully identified include those in which an 

unknown process or source is investigated. For instance, identifying specific organic products in 

aerosols gives some clues on the reactions taking place in these aerosols. Similarly, the 

identification of the organic compounds co-nucleating with sulfuric acid in the atmosphere is 

essential to understand the mechanisms of new particle formation (Chapter 5.5). In these cases it 

is necessary to aim at the maximum level of identification of the organic compound, which is only 

possible by combining different approaches or techniques (Chapter 4.2). By definition this level 

of identification corresponds to very small I values, ideally 1. The upper limit of 2 to 3 indicated 

above only accounts for potential stereoisomers of the same molecule. 

3. Coping with atmospheric complexity  

3.1. Sampling gaseous and particulate material 

Sampling is the first step of the characterization of compounds, both in the gas and the particle 

phase, and the choice of sample collection and preparation methods and appropriate analytical 

techniques can be crucial for their identification. This section aims to provide information on the 

sampling techniques for gaseous compounds and particulate material, and on the challenges and 

difficulties associated with the molecular identification of selected analytes. 
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a) Sampling of gaseous compounds 

VOC are commonly monitored in indoor and outdoor air. Methods for air sampling should leave 

the composition of the samples unaltered until analysis, be suitable for the type and concentrations 

of the compounds of interest and allow to carry out the analysis with sufficient sensitivity, 

accuracy, selectivity, precision, and cost efficiency. Various such techniques are available, 

including “whole air sampling”, where air samples are collected in containers, sampling on solid 

adsorbents, and continuous air sampling and on-line techniques. An overview of these sampling 

methods has been presented in previous review articles,8 and only a short summary will be made 

here. 

With “whole air sampling”, stainless steel canisters and Tedlar bags are the main containers 

used and they give rise to different potential artifacts. Canisters can keep air samples unaffected 

for up to 30 days until analysis, whereas Tedlar bags generally require the analysis to be performed 

within 24‒48 h. While samples collected in Tedlar bags can be subject to permeation through the 

walls and degradation due to sunlight, those collected in stainless steel canisters are mostly affected 

by sorption and reaction on walls, which hamper the sampling of reactive compounds or those 

prone to isomerization. However, canisters9 are widely used, especially for very volatile and non-

polar compounds.10 Their wide use in air monitoring has resulted in the development of a number 

of protocols for the analysis of a broad range of VOCs (e.g., the US Environmental Protection 

Agency methods TO-14, TO-14A, TO-15 and ASTM D-5466).  

Sampling by adsorptive enrichment can be used both for sampling itself and for pre-

concentrating the VOCs prior to GC/MS analysis, as summarized in review articles.11 They are 

followed either by thermal desorption or solvent extraction, depending on the type of compounds 

studied. No single sorbent or extraction technique is suitable for the entire range of ambient VOC 
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volatilities and polarities. Use of a combination of different sorbents, in increasing order of 

adsorbent strength, partly addresses this challenge. In addition, co-trapped atmospheric oxidants 

(e.g., ozone) can lead to interferences by reaction with the sorbent material or with the trapped 

VOCs. Samples with high water content are also a problem, not only for the adsorbing materials 

but also for the subsequent analysis, e.g., by accumulation in the cryogenic traps which are used 

for pre-concentration prior to GC analysis. The addition of derivatization reagents on solid 

sorbents, cartridges or denuders, or into a trapping solvent in impingers, can increase the selectivity 

of the sampling towards targeted compounds. Such methods are used, for instance, for the 

determination of semi-volatiles, i.e., carbonyl compounds by using 2,4-dinitrophenylhydrazine as 

the derivatization agent. 

Continuous and on-line sampling methods for VOCs avoid most of the sampling artifacts 

described above. New developments for these methods include miniaturization and techniques 

enabling higher time resolution or sensitivity, which have a potential for laboratory automation or 

on-site analysis. Examples include in-needle trap devices that allow for potential solvent-free 

sampling/sample preparation and introduction devices,12 or are used in direct coupling to mass 

spectrometry, i.e., fiber introduction mass spectrometry.13 Also membrane-based methods, such as 

membrane inlet mass spectrometry12,14 or membrane extraction with a sorbent interface13,15 have 

been described. 

In conclusion, a wide range of parameters has to be taken into account when selecting an 

appropriate sampling method, including the chemical properties of the target analytes, the 

complexity of the sample matrix, and the compatibility of the sampling method with various 

extraction and analytical techniques 

b) Sampling of particulate material 
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Sampling of particulate organic material (organic aerosols) is generally accomplished by 

collection on filter samplers or, to a lesser extent, with cascade impactors (e.g., MOUDI;14 DLPI, 

www.dekati.com). The topic has been  the subject of review articles16 and addressed in textbooks,17 

thus only a brief overview will be presented here, with emphasis on sampling artifacts and gas-

/particle-phase distribution. 

The choice of the filter material on which the samples are collected is critical. When the samples 

have to be analyzed by thermal-optical analysis18 for total organic, elemental and total carbon (OC, 

EC and TC), quartz fiber filters are mandatory because they are the only type able to sustain high-

temperature treatments. Otherwise, other materials can also be used, e.g., polytetrafluoroethylene 

(Teflon®), or aluminum foil in cascade impactors. However, they all give rise to artifacts. In 

particular, all filter types can result in negative artifacts as the particulate-phase organics collected 

on the filter may volatilize during sampling. It was suggested that about 40% of aerosol carbon is 

volatilized during sampling,19 but losses up to 80% have also been reported.15a Quartz fiber filters 

are also prone to positive artifacts due to their large adsorption capacity for volatile and semi-

volatile organic compounds.16 Several approaches have been proposed to avoid or to assess these 

artifacts. They vary from the simple use of double quartz filters (so called Q1Q2 or QBQ set-ups), 

to tandem filter set-ups16a or the use of denuders to remove organic and inorganic gases from the 

air sampled,20 to more sophisticated systems such as the Brigham Young University organic 

sampling system and its variants,21 where a denuder is used before the quartz fiber filter and an 

adsorbent bed (for collecting volatilized organics) is used after it. 

Several studies have investigated the artifacts linked with the use of quartz fiber filters in the 

analysis of total OC22 and for water-soluble OC (WSOC).22b But such studies have rarely been 

performed on individual organic species, with the exception of dicarboxylic acids (DCAs)23 and 
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polycyclic aromatic hydrocarbons (PAHs) and related compounds such as polychlorinated 

biphenyls.24 In addition, the gas-phase/particle-phase distribution of the species of interest has to 

be considered especially for long sampling durations. In a very recent study,23 this distribution was 

found to be close to or higher than unity in summer for 2-methyltetrols and levoglucosan.  

An alternative to collecting the particulate and gas phases separately is collecting the two phases 

together, as in a study reporting the measurement of a total of 180 compounds, including mostly 

n-alkanes, PAHs, and polar organic compounds, in field samples by GC/MS.25 This approach has 

however the disadvantage that the information on the concentrations in each of the two phases is 

lost. 

In summary, sampling artifacts and semi-volatile behavior exist for a number of particulate-

phase organic species. Their extent depends on many parameters such as temperature, relative 

humidity, sampling site, sampler type, collection substrate, sampling duration and sampling face 

velocity, and vapor pressure of the species. Some species are also prone to specific artifacts such 

as organic acids, for which the sampling efficiency depends on the degree of neutralization. 

Artifacts may be avoided by using denuders upstream of the sampler or an absorbent pad (e.g., 

polyurethane foam) to collect the species that are desorbing during sampling. More studies of 

sampling artifacts are necessary, especially for the compounds used in source apportionment.  

3.2. Standards and references 

In atmospheric chemistry, the identification of specific processes or sources requires full 

molecular identification and is often achieved by comparing specific tracers, or better marker 

compounds (see definition and discussion below in this section), to well-characterized reference 

compounds. Alternatively, when no authentic standards are available proxy compounds can be 

used but only for quantification. For example, since authentic organosulfate standards are not 
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commercially available, camphorsulfonic acid26 sulfate is often used as surrogate standard for the 

quantification of α-pinene-related nitrooxy organosulfates. In this section we provide information 

on commercially available reference standards and standards that have been synthesized and 

characterized by different research groups and used as marker compounds for specific scientific 

questions.  

a) Availability of authentic standards  

A number of molecules representing anthropogenic organic compounds such as linear and 

branched alkanes and alkenes,27 alkynes,28 aromatics, polycyclic aromatic hydrocarbons, and their 

oxygenated and nitro-substituted products29 (e.g., nitro and hydroxy xylenes, nitro 

methylnaphthalene)29 are available commercially. Some oxidation products for more complex 

molecules representing important atmospheric biogenic VOCs such as isoprene, monoterpenes 

(i.e., -pinene, -pinene, limonene, myrcene, terpinylene), and sesquiterpenes (i.e., -

caryophyllene, -humulene, -cedrene, -farnesene, etc.) are also available commercially. This is 

however not the case for many other of their oxidation products. Table 1 gives an overview of 

reference standards for such compounds, which are not commercially available, but have been 

synthesized and characterized in non-commercial laboratories using a variety of analytical 

techniques. 

b) Synthetic approaches towards authentic standards for analysis 

The identification of an unknown compound in ambient or laboratory-generated samples 

requires the use of authentic standards. However, many authentic standards are not commercially 

available, especially compounds that are specific to atmospheric chemistry or have been recently 

identified.  

Table 1. Overview of synthesized reference standards for some atmospheric VOC reaction 
products. Acronyms: see list of abbreviations. 
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Precursor (class) Marker compound Characterization Method 
Synthesis 
ref. 

Lab/Field 
evidence ref. 

     
Hemiterpenes     
isoprene 2-methylthreitol GC/MS 30 30-31 

 2-methylerythritol GC/MS 30 30 

 (2S,3R)-, (2R,3S)-, (2S,3S)-, (2R,3R)-        
2-methyl-tetrols 

NMR, GC/MS 32 6,32b 

 2-methylglyceric acid  GC/MS 30 30 

 2-methylglyceric acid oligoesters, 
sulfates, nitrates  

NMR 33 31,34 

 methyl vinyl ketone, methacrolein 
sulfonates 

HPLC/MS, 3Q-ESI-MS (on-line, off-
line)  

33 33 

 cis- and trans-3-methyl-3,4-
dihydroxytetrahydrofuran 

NMR, GC/MS 35 35b 

     

Monoterpenes     

-, -pinene 3-hydroxyglutaric acid, 
3-methyl-1,2,3-butanetricarboxylic acid  

GC/MS 
GC/MS, HPLC/ESI-MS 

34,36 34,36 

 cis-pinic acid NMR 37 37 

 hydroxy-pinonic acid NMR 38 39 

 hydroxy-pinonaldehyde NMR 38 39 

 terpenylic/terebic acid HPLC/ESI-MS 39 30,40 

 diaterpenylic acid acetate NMR, HPLC/ESI-MS 41 41 

 diaterpenylic acid HPLC/ESI-MS 41 40-41 

     

Sesquiterpenes     

-caryophyllene -caryophyllene aldehyde, 
-nocaryophyllene aldehyde 

NMR, GC/MS, ESI-MS 42 42 

 -caryophyllonic acid, 
-nocaryophyllonic acid, 
β-caryophyllinic acid, 
3,3-dimethyl-2-(3-oxobutyl)-
cyclobutanecarboxylic acid, 
2-(2-carboxyethyl)-3,3-dimethylcyclo-
butanecarboxylic acid  

NMR, GC/MS, APCI-MS, 
HPLC/ESI-MS 

43 43 

 

This seriously hampers unambiguous structural elucidation. There are a number of 

manufacturers and/or fine chemicals suppliers that offer custom synthesis of authentic standards. 

Year by year this list expands, including small or medium-sized enterprises that have expertise 

with the synthesis of a narrow class of organics, e.g., Extrasynthèse offers a wide range of terpenes. 

Information about fine chemicals suppliers can be retrieved using on-line comprehensive 

databases, such as SciFinder® (a product of the ACS) and Beilstein® (a product of Elsevier B.V), 

or alternatively, using free-of-charge Internet resources, such as Chem Blink 

(http://www.chemblink.com) and Chemical Book (www.chemicalbook.com). Because of the lack 
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of commercially available standards, research groups focusing on the molecular characterization 

of unknown organic compounds in the atmosphere have resorted to organic synthesis. Some 

studies have already demonstrated the value of organic synthesis to obtain reference compounds 

for hemi-,36 mono-,34 and sesquiterpene43 oxidation products or potentially relevant light-

absorbing species formed through simple reactions in aerosol mimicry.44 

A useful approach to address the synthesis of an unknown compound in atmospheric research is 

based on retrosynthetic analysis of the target structure, a concept of molecular decomposition 

according to simple rules.45 This approach involves the fragmentation of a target structure through 

a number of idealized molecular fragments denoted as synthons and continues until simple or 

commercially available structures are generated. Figure 1 shows an example of the retrosynthetic 

approach applied to the synthesis of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a marker 

for aged α-pinene SOA.34,36 It was not until 2007 that the structure of this unknown α-pinene SOA 

marker with a MW of 204 was proposed and firmly confirmed using the latter approach 

(disconnection B in Figure 1).36 In the synthesis of MBTCA, -bromoisobutyrate served as the 

synthetic equivalent for the electrophilic synthon, while alkyl succinate was selected as the 

synthetic equivalent for the nucleophilic synthon. Following the same strategy, MBTCA has 

recently been synthesized with high yield (78%) using methyl 2-methylpropanoate and dimethyl 

maleate as synthons.46 The retrosynthetic synthesis approach could be applied to support the 

structural elucidation of other unknown compounds obtained from laboratory experiments or field 

studies. 

In conclusion, targeted organic synthesis is a useful approach to support the unambiguous 

structural identification of unknown compounds in ambient aerosols and could be carried out either 

by commercial vendors or research laboratories using a variety of strategies. However, targeted 
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synthesis of the proposed compounds remains an expensive and/or a time-consuming task. 

Methods based on separation science can be employed instead. For instance, semi-preparative LC 

has been recently used as alternative approach to organic synthesis to obtain SOA markers from 

laboratory solutions for identification and quantification purposes.47 

c) Assessing the atmospheric lifetime of marker compounds 

By definition an atmospheric tracer is “an entity which preserves its identity as it moves with 

the air from a known source, where the tracer is created or otherwise introduced into the 

atmosphere, to a known sink where it is destroyed or removed from the atmosphere”.48 In this 

review preference has been given to the term “marker” instead of “tracer” as organic compounds 

in the atmosphere generally do not fulfill the requirement of preservation (e.g., due to reactions).  

The identification of appropriate marker compounds for specific atmospheric processes is a 

difficult task due to the wide range of complexity and concentrations encountered in smog chamber 

and atmospheric samples. Important quality criteria for suitable marker compounds are reactivity, 

stability, and volatility (the later only for markers of condensed-phase organic compounds).  

For the markers of condensed-phase organic compounds volatility is one of the major parameters 

determining the atmospheric lifetime. Aqueous-phase reactions in clouds or condensed-phase 

reactions in aerosol particles can also be important for compound degradation, especially in the 

case of reactive species such as aldehydes. However, data on condensed-phase degradation or 

transformation processes is still very limited and subject of ongoing research and discussion. The 

atmospheric lifetimes for the markers of SOA from most precursors, including isoprene, 

monoterpenes, and aromatics are rather short (<1 day) (Figure 2) and are determined from their 

volatility, the latter being estimated from the number of carbon atoms and functional groups. A 

few exceptions to these short lifetimes include acidic sesquiterpene markers (estimated lifetime 2 
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– 10 days), the marker for aged α-pinene SOA MBTCA (estimated lifetime ~10 days), and 

oligomeric esters of acidic isoprene oxidation products (2-methylglyceric acid diester, estimated 

lifetime >10 days). 

3.3. Quality control and intercomparison 

Intercomparisons between different techniques or between operators have for objective to 

evaluate the analytical repeatability and reproducibility of the measurements and to highlight any 

bias or factor influencing the results. They are thus important for the quality control of the sampling 

and analysis method. For instance an interlaboratory comparison (ILC) allows laboratories to 

assess and demonstrate their performance in a particular test, calibration, or measuring sector. 

While several ILCs have been organized for the measurement of VOCs, very few have been 

organized for the measurement of aerosol organic compounds. However, an interlaboratory 

comparison has recently been organized for the measurement of levoglucosan, mannosan and 

galactosan within the European ACTRIS project.49 The results evidenced small standard 

deviations between the measurements of levoglucosan, mannosan, and galactosan made by the 

thirteen participants. This ILC also revealed the lower detection limits of most GC/MS methods 

compared to those based on high-performance anion-exchange chromatography (HPAEC) with 

mass spectrometric or photodiode-array detection. In spite of the great benefits of ILCs for the 

quality of the measurements it is not realistic to propose such intercomparison activities to be 

organized for a large number of compounds. However, this would be desirable for major markers 

in ambient aerosol such as fungal spore markers (arabitol and mannitol) and biogenic SOA markers 

(2-methyltetrols, 2-methylglyceric acid for isoprene SOA; MBTCA, pinonic, pinic, terpenylic, and 

terebic acid for α-pinene SOA). 

4. The analytical tools  
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In this chapter analytical techniques used and developed for the analysis of atmospheric trace gases 

and particles are described. First, in Section 4.1 one-dimensional techniques are presented, which 

consist in using only one physical-chemical property as parameter for the separation and 

identification of compounds, such as their optical or nuclear magnetic properties or molecular 

weight. In Section 4.2 multidimensional techniques are described which combine more than one 

one-dimensional technique and property for the identification, such as retention time in a 

chromatographic system and molecular weight measurement. In general multidimensional 

techniques offer a higher degree of identification (i.e., a lower I factor) than one-dimensional ones 

but are more challenging instrumentally. They also rely mostly on laboratory instruments whereas 

many of the one-dimensional techniques have been developed into on-line and field-deployable 

instruments. The main classes of techniques discussed in this review are compared in terms of their 

I factor in Figure 3. 

4.1. One-dimensional techniques  

4.1.1. Optical and magnetic spectroscopies  

Optical and magnetic spectroscopies were classical identification techniques for atmospheric 

compounds before multi-dimensional techniques were developed. As they are based on the 

interactions of molecular functional groups with light or magnetic fields, optical and magnetic 

spectroscopies provide generally functional information, i.e., specific to chemical groups or bonds, 

rather than full structural information. However absorption spectroscopies (UV-Vis and FTIR) are 

suitable for the speciation of very small atmospheric organic compounds (C1, C2) and a greater 

variety of compounds has been successfully identified by emission FTIR spectroscopy.50 Optical 

spectroscopies are also the only analytical techniques applicable to remote sensing. Their latest 

development over the last decade was in the form of cavity ring down spectroscopy and related 
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techniques, the sensitivity of which is considerably enhanced, and which allows for the detection 

and quantitation of atmospheric compounds in the low parts per trillion (ppt) or sub-ppt ranges. 

The techniques listed in Table 2 will only be briefly described in this paper, and the reader can 

refer to recent reviews and books51 for a more comprehensive summary. The optical spectroscopies 

[FTIR, ultra-violet (UV)-Visible (Vis), etc.)] are described below, followed by nuclear magnetic 

resonance. Only one-step NMR methods are discussed in this chapter while the combination of 

NMR detection with chromatographic separation will be presented in Chapter 4.2. 

Table 2. Non-mass spectrometric detection methods for atmospheric gas-phase organic 
compounds. Acronyms: see list of abbreviations.  

Chemical species Detection method References

hydrocarbons FTIR, GC-FID, CRDS, LP-DOAS (aromatics), 
chemiluminescence (alkenes) 

50,52 

HCHO FTIR, DOAS, derivatization-fluorescence, 
LC/derivatization-UV  

50,53 

other OVOCs DOAS, GC-FID and HPLC/UV techniques 54 

PAN FTIR, GC-ECD 55 

halocarbons FTIR, GC-ECD 56 

 

a) FTIR and UV-Visible absorption spectroscopy 

All organic molecules absorb light both in the IR (wavelength = 0.7 ‒ 25 µm) and the UV- Vis 

(0.1 – 0.7 µm) region, which can be used for the characterization of their molecular structure. 

However, as the information obtained is mostly functional (i.e., specific to molecular groups or 

bonds) rather than structural, except for a few small molecules, absorption spectroscopies are more 

widely used for the quantification of known trace gases than for the identification of unknown 

compounds in the atmosphere.  
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In IR spectroscopy the spectral lines originate from the vibrational-rotational transitions of 

chemical bonds or functional groups in the molecules. The first important characteristic of these 

spectral lines, or bands, is their position in wavelength (or frequencies), which depends on the 

energy of the corresponding transition. Most of the absorption bands of interest for organics are 

between 500 and 4000 cm‒1 (near and mid-infrared region),  while the high frequency portion 

(≥1300 cm‒1) displays the characteristic stretching bands of important functional groups such as 

OH, NH and C=O, and the ring bending absorption bands of aromatics appear below 900 cm‒1. 

Absorption patterns in the intermediate region (1300 ‒ 900 cm‒1) are more complex and specific 

to some molecules, and can therefore be used for identification (fingerprint region). In addition to 

frequencies, the width and shapes of the absorption lines are also important for both qualitative 

and quantitative measurements. In the condensed phase inter-molecular interactions make the IR 

absorption bands of organic compounds much broader than in the gas (spectral resolutions of the 

order of tenths cm‒1) thus limiting their molecular identification. The characteristic I factor for 

solid-state FTIR spectroscopy is therefore very high (>102) and this technique has been used 

mainly for laboratory studies,57 functional group characterization and spectral fingerprints 

(similarly to NMR as discussed below).7b,58 Organic gases, however, exhibit finer spectral features 

with typical line widths of 0.1 cm‒1 in the troposphere and of 0.01 cm‒1 in the stratosphere, 

providing a suitable tool for molecular identification and quantification.47b The measurements are 

either performed with a tunable solid-state laser or a broadband IR source and a FTIR spectrometer. 

The former allows for sensitive measurements in a narrow wavelength range, while the latter is 

used for molecular speciation but at the expense of sensitivity (roughly three orders of magnitude 

lower than lasers). Tunable solid state lasers are therefore used to identify and quantify simple 

organic molecules, such as CH4, CH2O, HCN, OCS and inorganic trace gases59 while FTIR 
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spectrometry has been successfully applied to the speciation of a range of VOCs including CH4, 

C2H4, CH3COOH, CH2O, CH3OH, HCN, HCOOH, C2H2, furan, and glycolaldehyde.50 However, 

the poor detection limits (e.g., ca. 10 – 20 ppb for HCHO) make the FTIR method more suitable 

for laboratory applications or field measurements close to strong emissions, such as wildfires or 

prescribed fires.60 An important advantage of FTIR spectroscopy over alternative methods for 

VOC analysis such as PTR-MS is the simultaneous detection of organic and inorganic trace gases 

(including H2O, CO2, CO, NH3, and HONO). 

In UV-Vis spectroscopy, the absorption bands result from electronic transitions in the molecules 

and are fairly broad. Various types of electronic transitions can occur but those resulting in the 

highest molar absorptivity (ε ≥1000) above 200 nm (i.e., the cut-off of most common solvents) are 

π → π* transitions and, in case of polyconjugations, n → π* transitions. The structural information 

obtained from UV-visible spectra in the condensed phase is very limited as the corresponding 

bands are not specific. This technique has thus been mainly used in combination with other 

techniques (e.g., LC-UV-Vis). But in the gas phase the combination of vibrational and electronic 

transitions greatly enhances the specificity of the bands. If the resulting spectrum contains 

sufficient fine structures with characteristic narrow bands (≤ 10 nm), the technique can be very 

selective. Most applications of UV-vis spectroscopy to organic identification are limited to a few 

very simple molecules (HCHO, CS2), although larger molecules with strong chromophores 

(benzene, toluene, naphthalene, phenol, p-cresol) can be also observed. Thus, overall UV-Vis 

spectroscopy has a low capacity to identify unknown compounds, corresponding to I factors in the 

range of >102, and is mostly used to monitor known compounds. In addition, its lower sensitivity 

compared to modern PTR-MS instruments limits its atmospheric applications.52c 
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b) Differential optical absorption spectroscopy (DOAS) and cavity ring-down spectroscopy 

(CRDS) 

DOAS and CRDS are the latest developments of IR and UV-Vis spectroscopies, and have been 

designed to improve one of their weakest points: their low detection sensitivities. This is mostly 

done by extending the optical pathlengths. In its simplest configuration, long-path DOAS consists 

in a continuous light source, i.e., a Xe-arc lamp, placed at the focal point of a parabolic mirror 

generating a well collimated light beam and, at some hundreds of meters away, a telescope coupled 

to a detector. Absorption spectra of air molecules in the UV-Vis region are typically dominated by 

a broad-band signal caused by the Rayleigh scattering. Such signal must be subtracted to provide 

the characteristic narrow-band (≤ 10 nm) absorption of the gases of interest (their “differential” 

spectrum).61 These fine bands allow, in principle, DOAS to identify and quantify a wide range of 

gases. However, while this technique is routinely used to quantify inorganic trace gases (O3, NO2, 

SO2) and some VOCs, the identification of organic compounds is limited to a few small molecules, 

such as formaldehyde, glyoxal,  methylglyoxal, and aromatic hydrocarbons.62 The “open path” 

configurations normally employed for long-path (LP)-DOAS, were used to extend the pathlength 

also in IR spectroscopy.56b Beside the systems employing artificial light sources, passive 

measurements can be carried out with DOAS and IR spectroscopy by employing extraterrestrial 

light sources (the sun, the moon),57 and typically over very long paths (several thousands of 

kilometers). Passive measurements are the principle of remote sensing. Thanks to the identification 

and characterization of VOCs in laboratory and in the field, DOAS is the only identification 

technique applicable to remote sensing and is widely used for the retrieval of the total column and 

vertical concentration profiles of many trace gases. Satellite DOAS sensors such as GOME and 

SCIAMACHY, measuring individual atmospheric trace constituents in the UV-Vis and near-IR 
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region and using recent characterizations of formaldehyde and glyoxal by these techniques,63 have 

thus provided global concentration maps for these compounds.58 

A further way to expand the optical pathlength and increase the sensitivity of atmospheric 

measurements is to flow the air samples through a closed cell where a laser beam is reflected 

between two highly-reflective mirrors. These multipass cells allow achieving pathlengths of 200 

m with a cell, which is only 1-m long. Pathlengths of a few kilometers can be reached in cavity 

absorption spectroscopy and pulsed CRDS, employing a laser and a high-finesse optical cavity. In 

CRDS, the measurement is carried out after the light source is switched off, and the extinction 

produced by the substance of interest is determined from the decay of the intensity of the laser 

leaving the cell (the “ring-down”).64 CRDS is mostly used in the atmosphere to monitor small 

inorganic molecules and their isotopic composition, but is, in principle, applicable to the analysis 

of (a few) C1-C2 VOCs, as demonstrated in laboratory and some field conditions.59 A further 

development of CRDS is cavity-enhanced DOAS, with which 10 - 40 km pathlengths are now 

routinely achieved. This has important benefits for the sensitivity of the technique, as it enables 

on-line measurements close to atmospheric conditions in laboratory settings.65 

c) NMR spectroscopy 

Nuclear magnetic resonance spectroscopy is a quasi-universal technique for the analysis of 

organic compounds, and the main technique of reference to support the structural elucidation of 

organic compounds. It is however less used in environmental chemistry where sample loading can 

be too small to apply 13C and heteronuclear NMR techniques. The general principles of NMR 

spectroscopy have been described in many text books.66 The principle is that nuclei with a nuclear 

spin different from zero, such as 1H, 13C and 15N, change orientation when subjected to an external 

magnetic field. But in addition to the “magnetic resonance” at the fundamental nuclei frequency 



27 

 

small deviations, of the order of a few part per millions (ppm), are induced by the chemical 

environment of the nucleus, thus providing local information on the structure of the molecule. 

Typical NMR spectra record these chemical shifts and allow to correlate one nucleus to another 

and to reconstruct the entire chemical structure. When only a limited number of compounds are 

present in a sample, stereoisomers can be differentiated, and I factors approaching 1 can be 

reached. Molecular identification in complex mixtures containing hundreds of resonances can also 

be performed with NMR but require procedures to reduce peak overlap. This can be achieved by 

increasing the magnetic field, hence reducing peak width and narrowing multiplets. Alternatively, 

series of samples from the same experiment can be analyzed by chemometric techniques (e.g., 

factor analysis) to attempt spectral deconvolution.67 Finally, if sufficient amount of sample is 

provided (typically 1 mg of carbon), two-dimensional (2D) NMR techniques can also be applied, 

such as correlation spectroscopy or heteronuclear single quantum coherence or even heteronuclear 

multiple bond correlation,68 which establish the connectivity between chemically-distinct H or C 

atoms in a molecule, and allow to reconstruct the chemical structure. Thus, 2D NMR has the 

potential to achieve low I factors even in complex compound mixtures. 

However, while NMR spectroscopy is optimal for liquid samples, it is unsuitable to the analysis 

of gases and allows the analysis of amorphous solids only with a much lower resolution,  i.e., with 

chemical shifts of around 100 KHz for 1H-NMR.69 Another advantage of NMR spectroscopy over 

other techniques is that quantitative spectra can be obtained relatively easily, especially with 1H 

spectroscopy, as the line intensity is, in first approximation, directly proportional to the molar 

concentration of the nucleus of interest.  

Unfortunately, the most interesting nucleus in organic chemistry, 12C, has a nuclear spin of zero 

and is therefore NMR-silent. By contrast the isotope 13C is magnetically active but because its 
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natural abundance is only 1.1% the sensitivity of 13C NMR spectroscopy is almost four orders of 

magnitude lower than that of 1H NMR. Thus the vast majority of NMR studies of atmospheric 

organic compounds is made with proton NMR techniques, and deal with aerosol extracts, cloud, 

fog or rainwater, or aqueous solutions of polar VOCs. It is worth noting that strong magnetic fields 

(≥600 MHz) allow to resolve hundreds of resonances in atmospheric samples70 with opportunities 

to discover new aerosol constituents. 

A common assumption in atmospheric science is that the sensitivity of NMR spectroscopy is too 

low for a widespread application. While this is certainly true for 13C and heteronuclear NMR 

methods, and for the 1H NMR analysis of small aerosol volumes (e.g., in reaction chambers), it is 

certainly not the case for 1H NMR analysis of ambient aerosols. 1H NMR spectra of aerosol water-

extracts containing less than 100 µg of carbon (sample loadings reached even in remote areas) can 

be easily recorded at 600 MHz. Typical detection limits for individual compound H-NMR analysis 

are in the sub-ng m‒3 levels (for time-integrated samplings of 12 – 24 h) thus not inferior to that 

of standard gas chromatography (GC)/MS or liquid chromatography (LC)/MS methods.81a The 

real limitations of NMR with respect to alternative off-line chemical methods consist in: (i) the 

complexity of the spectra for compounds with extensive J-couplings, (ii) the difficulty to acquire 

a second dimension, (iii) the difficulty of hyphenation with other spectroscopic and 

chromatographic techniques, and (iv) limited automaticity preventing the analysis of large number 

of samples. A further caveat specific to atmospheric applications is the lack of NMR spectra 

libraries for atmospheric markers. This is a major limitation because the critical step when 

investigating atmospheric organic compounds by 1H NMR spectroscopy is the spectral analysis 

and compound identification. Table 3 provides a compilation of research papers reporting chemical 

shift data for compounds of atmospheric importance. The vast majority of these studies were 
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published in the last five years, indicating that the use of NMR tools for atmospheric organic 

speciation is rapidly expanding. 

An area of atmospheric chemistry where NMR tools have gained the widest application are the 

kinetic and mechanistic studies in aqueous media. The systems studied include the oligomerization 

of carbonyls and carboxylic acids,33,71 condensation between carbonyls and ammonia or amines,72 

oxidation of phenolic compounds,73 hydrolysis of organosulfates and organo-nitrates,74 hydrolysis 

of epoxides,75 and photochemistry of carbonyls and carboxylic acids.76 NMR spectroscopy has 

however been less applied to the investigation of the composition of SOA produced in reaction 

chambers.47 This is due to the complexity of these samples,72b,77 the lack of chemical shift libraries 

and the relative small amounts of sample produced in such experiments under atmospherically 

relevant concentrations. But the development of continuous SOA production methods in chambers 

will certainly allow the application of highly informative off-line techniques such as 

multidimensional NMR methods in the near future.47,78  

Table 3. Published chemical shift data for compounds of atmospheric importance. 

Chemical compounds or chemical classes References 

pinonaldehyde 79 

ketoaldehydes from monoterpenes 47,80 

organic acids from -pinene oxidation 47,81 

cis-pinonic photo-oxidation products 76 

-pinene epoxide, isoprene epoxide reaction products 75a-75c 

sesquiterpene oxidation products  43 

tetrols and methyl-tetrols 32b,75d 

methyl-glyceric acid 33 

organic acids from toluene oxidation 82 

chemical condensation products between glyoxal and NH3
72a 

hydroxyl-carboxylic sulphate esters 74a 

hydroxyl-alkyl nitrates 83 
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guaiacol oxidation products 84 

oleic acid oxidation products 85 

PAH oxidation products 86 

 

Some examples of successful molecular identification in ambient aerosols using NMR methods 

can be found in the recent literature. They include the identification of low-MW compounds such 

as dimethylamine, diethylamine, methanesulfonate and hydroxyl-methane-sulfonate,87 as well as 

some major C6-C10 compounds: formate, pinonic and pinic acid, and levoglucosan.88 Other studies 

focus mainly on functional group analysis.89 Interestingly, the resolution of mono- and bi-

dimensional 1H NMR spectroscopy allows to identify spectral fingerprints characteristic of 

specific chemical classes, such as aliphatic compounds carrying linear methylenic chains.90 

4.1.2. Mass spectrometric techniques  

a) Mass spectrometry – key characteristics 

The principle of mass spectrometric techniques is to analyze compounds of interest (or analytes) 

based on the ions they produce. These techniques thus involve three main components: an 

ionization technique, a mass analyzer, and a detector. While the detectors are fairly common to all 

mass spectrometers, a wide range of techniques is now available for ionization and mass analysis, 

each of them being affected by a number of parameters. These different techniques and parameters 

determine the performance of a mass spectrometer and the classes of compounds that can be 

analyzed. 

Ionization methods  

This first section presents the different ionization techniques available for analytes. Over the last 

decades a large number of ionization techniques have been developed for organic compounds, 
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each of them having specific advantages and drawbacks. Only the most frequently used in 

atmospheric sciences are discussed in this section.  

One of the most widely used ionization techniques is electron ionization (EI), which consists in 

colliding the analytes with 70 eV electrons. Such energetic collisions ensure the ionization of 

nearly all organics. It also mostly leads to fragmentation,91,92 which provides structural information 

on single analytes, for instance, after separation from a mixture with a chromatographic system. 

However, the interpretation of fragmentation patterns obtained with EI becomes challenging or 

even impossible for complex mixtures that are not subjected to prior separation. Another energetic 

ionization (or “hard ionization”) method is laser desorption/ionization (LDI),91-92 which suffers 

from the same limitations for the analysis of complex samples. Thus, the identification power of 

MS techniques using hard ionization such as EI or LDI, when used alone, is generally low and the 

I factor correspondingly large. However, this identification power can be very high (I factor close 

to 1), when combined with chromatographic separation (Sections 4.1 and 4.2), because the mass 

spectra obtained are specific and reproducible, thus can serve as fingerprints for the identification 

of unknown compounds, and comparable with the spectra of known compounds from a library 

database.    

By contrast, soft ionization techniques result in much less fragmentation of the analyte, thus 

significantly increasing the potential of identification of individual compounds, and thus the I 

factor, in complex mixtures. However soft ionization techniques, while having relatively high 

ionization efficiencies, often suffer from poor sensitivity due to signal loss resulting from the 

transfer of the ions from ambient pressure into the vacuum system. Chemical ionization (CI) is a 

relatively soft ionization technique where the analytes are ionized by reaction with specific reagent 

ions to produce diagnostic ions.91-92 Both reagent and diagnostic ions are then detected by the mass 
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spectrometer. Vacuum and atmospheric pressure CI (atmospheric pressure chemical ionization, 

APCI) are today frequently used in atmospheric mass spectrometry and on-line sampling 

techniques have been developed for both.93,94 Another type of soft ionization technique uses a light 

source (photoionization, PI), for instance in the UV or vacuum UV (VUV) range, the wavelength 

of which can be optimized.95 Such ionization technique can also be applied in the vacuum region 

of the spectrometer or at ambient pressure (APPI).96,97 Electrospray Ionization (ESI) is another 

frequently-used ionization technique for atmospheric samples.91-92 It has the advantage of being 

very soft but is only efficient for fairly polar compounds. Another drawback is that the ionization 

efficiencies, and thus peak intensities, of various compounds in complex mixtures vary strongly 

with sample composition and ionization conditions, so that ESI mass spectra are generally not 

representative of the overall sample composition. Beside conventional ESI analysis, a number of 

ESI techniques have successfully combined the sample work-up and ionization of atmospheric 

samples in recent years, such as desorption electrospray ionization (DESI),98 nano-DESI99 and 

liquid extraction surface analysis.100 They allow organic aerosol samples to be extracted and 

analyzed directly from filters or impactor plate without time-consuming sample extraction.99,101 

Extractive electrospray ionization,102 where a continuous aerosol flow is combined with an 

extraction solvent electrospray within the ionization source, has recently been shown to be 

quantitative for on-line organic aerosol analysis.103  

In general, neither soft nor hard ionization techniques can reach I factors better than 10 when 

employed alone. Achieving a low I factor with these techniques requires to combine them with 

chromatographic separation (Chapter 4.2). 

Resolution, accuracy, and dynamic range 
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This section discusses the factors affecting the mass filtration and detection in mass spectrometry. 

Three parameters characterize the performance of mass filtration and the ability of an instrument 

to analyze highly complex mixtures: mass resolution, mass accuracy, and dynamic range. The 

resolution of an instrument is defined as the ability to resolve neighboring mass spectral peaks (Eq. 

1): 

R = (m/z) / peak width at half maximum (Eq. 1) 

where m/z is the mass-to-charge ratio of an ion. 

A high mass resolution can separate two compounds with mass differences of a few milli-Dalton 

or less, and high-resolution mass spectrometers achieve a resolution of several 100,000’s (Section 

4.2.3 f) for ultra-high resolutions techniques). This is especially relevant for the analysis of 

atmospheric aerosols where several hundred or thousands of mass spectral peaks are often 

measured over a mass range of a few 100 m/z.  

Mass accuracy is defined as the difference between the measured and theoretical mass, relative 

to the theoretical mass (Eq. 2) and is generally expressed in parts per million (ppm).  

	ݖ/݉∆ ൌ ቆ
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ି	೘
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೘
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ቇ ∗ 10଺ (Eq. 2) 

High-resolution mass spectrometers (Section 4.2.3 f)) achieve an accuracy in the low or sub-ppm 

range. High resolution and high accuracy instruments allow not only to characterize the entire 

complexity of atmospheric samples (which is especially important for one-dimensional 

techniques) but also to assign the elemental composition of all (or most) peaks observed in the 

mass spectrum.  

Both mass resolution and mass accuracy directly affect the I factor that can be achieved with an 

instrument. Combined with other features such as chromatographic separation and/or tandem mass 
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spectrometry very low I factors approaching 1 can be reached with high resolution and high 

accuracy instruments 

Finally, the dynamic range is defined as the range of analyte concentration over which the signal 

from the detector is directly proportional to this concentration. Although the dynamic range is not 

directly related to the identification power of an instrument, it can affect the detection of low-

concentration compounds in mixtures that are dominated by highly abundant ones. For instance, 

if the full scan mass spectra of mixtures are dominated by very abundant species, the detection and 

subsequent identification of less abundant compounds is compromised. This can be overcome by 

increasing the resolution of the chromatographic separation, and by avoiding the co-elution the 

highly-abundant and trace compounds. However resolving such problems generally requires 

specific strategies such as specific instrument settings and/or sample pre-treatment (e.g., the 

application of sample fractionation) to avoid reaching the upper limit of the dynamic range. 

b) Direct MS techniques for organic trace gases: PI-MS, CI-MS and PTR-MS 

Direct mass spectrometric techniques for the analysis of atmospheric gases, i.e., those applied to 

atmospheric samples without prior separation, are generally based on photo- or chemical ionization 

since, as explained in the previous section, this ionization technique can achieve small I factors 

under such conditions. In the absence of preparation or separation of the samples, the level of 

identification obtained depends mostly on the selectivity of the ion chemistry, i.e., the uniqueness 

of the diagnostic ion produced from a given analyte, and on the mass accuracy or MS/MS analysis 

of the diagnostic ions. In complex matrices such as atmospheric samples only a few organic trace 

gases can be reasonably identified (1  I  5). However, direct CI-MS was primarily designed to 

carry out fast measurements (0.1 ‒ 1.0 s time resolution), to study, for example, transport processes 

or detect highly reactive species (e.g., hydroxyhydroperoxides). 
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Atmospheric applications of direct CI-MS were pioneered in the mid-1980s.104 The main direct 

CI-MS techniques currently used for the measurement of organic trace gases in the atmosphere are 

summarized in Table 4. The most widely used is proton-transfer-reaction mass spectrometry,105 

where nearly all the organic gases present in air samples are ionized by accepting a proton from 

hydronium ions (H3O+). While the protonated diagnostic ions are fairly specific to their parent 

analytes all PTR-MS instruments are somewhat prone to interferences from dissociative proton or 

electron transfer reactions, thus to some degree of fragmentation. Early PTR-MS instruments used 

quadrupole filters for mass analysis, resulting in poor identification capabilities. Numerous 

intercomparisons with other analytical methods have shown that 10 ‒ 15 organic gases could be 

detected by quadrupole CI-MS in the atmosphere without major interferences,106 although their 

identification is not made by the quadrupole PTR-MS instrument alone but based on previous 

studies and plausibility arguments (the presence of only C, H, O and N atoms in the molecules).  

Table 4. Overview of the main direct CI-MS techniques currently used for organic trace 

measurements in the atmosphere. Acronyms (except those in the list of abbreviations): QIT: 

quadrupole ion trap; LIT: linear ion trap; CIT: California Institute of Technology; TQ: triple 

quadrupole; LR: low resolution; NI: negative ion; PT: proton transfer; TD: thermal desorption. 

Acronym CI reagent 
ion 

Analytes Diagnostic ion MS 

PTR-MS H3O+ alkenes, alcohols, carbonyls, 
aromatics, acetonitrile  

[A+H]+ Q, 
HR-TOF, 
QIT, LIT 

CIT-CIMS CF3O‒ organic hydroperoxides, 
carboxylic acids, 
multifunctional organic 
compounds 

[CF3O+A]‒ 
[A+F]‒ 

Q, TQ, 
LR-TOF 

NI-PT‒
CIMS 

CH3C(O)O
‒ 

carboxylic acids [A-H]‒ Q 
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TD-CIMS I‒ peroxyacyl nitrates [A-NO3]‒ Q 

CIMS C2H5OHH+ ammonia, amines [A- C2H5OHH]+ Q 

 

These compounds include oxygenated VOCs (methanol, acetaldehyde, acetone/propanal), 

biogenic VOCs (isoprene, methyl vinyl ketone/methacrolein, sum of monoterpene isomers), 

aromatics (benzene, toluene, sum of xylene isomers) and acetonitrile, an important atmospheric 

biomass burning marker. The analytical deficit of the quadrupole PTR-MS instrument has been 

partly overcome with the proton-transfer-reaction time-of-flight mass spectrometer, allowing for 

high mass resolution.107 This instrument can determine the elemental composition of ions, but still 

under the assumption that they contain only C, H, O, and N atoms. Under this assumption, organic 

analytes can be identified down to the isomer level, thus with I factors between about 2 to 5.108 

Prototype PTR-MS instruments with isomer-resolving MS/MS capability (ion traps) have also 

been developed but have been limited to a few field studies.109,110  

Direct CI-MS methods using other reagent ions have been developed to target selected classes 

of analytes. But since none of them involves accurate mass measurements (Time-of-Flight), the 

identification achieved relies on the (validated or non-validated) assumption that no interferences 

are present in the atmospheric matrices.  

An example of direct CI-MS is the California Institute of Technology – CI-MS technique, which 

uses trifluoromethoxy anions, CF3O‒, to detect organic hydroperoxides, carboxylic acids and 

multifunctional organic compounds.111 These analytes are detected as CF3O‒ adducts by low-

resolution MS. Selected isobars/isomers are distinguishable via MS/MS analysis in the triple 

quadrupole version of the instrument. Isomeric carboxylic acids and hydroxycarbonyls can be 

differentiated via isomer-specific side reactions (F‒ transfer to carboxylic acids). Applications of 

this instrument to the atmosphere have led to the measurement of peroxyacetic acid,111 formic acid, 
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acetic acid, propionic and peroxyacetic acid,112 isoprene hydroxyhydroperoxides113 and 

epoxydiols,114 methyl hydroperoxide,115 acetic acid, glycolaldehyde, and hydroxyacetone,116 and 

multifunctional organic nitrates117 including isoprene hydroxynitrates. In addition, 

hydroperoxyaldehydes were detected in recent field studies (J. Crounse, personal communication).  

A negative-ion PTR CI mass spectrometer118 using acetate ions, CH3C(O)O‒, has been 

developed to detect carboxylic acids via selective proton abstraction reactions. The resulting 

conjugate carboxylate anions, RC(O)O‒, are detected by quadrupole mass spectrometry. This 

instrument was used to measure formic, acrylic, methacrylic, propionic and pyruvic/butyric acid 

in the atmosphere, the latter being isomers that cannot be resolved.119 

A CIMS technique to detect ammonia using protonated ethanol or acetone ions as CI was also 

developed.120 The same ion chemistry was further incorporated to measure amines and ammonia 

simultaneously, at the pptv or sub-pptv level with a time resolution less than 1 min.121 A PTR CI 

mass spectrometer was also used to measure amines and ammonia at atmospheric 

concentrations.122 

Thermal dissociation CI-MS123 is used to measure peroxyacyl nitrates (PANs) which are formed 

in the atmosphere from association reactions between peroxyacyl radicals, RC(O)O2, and nitrogen 

dioxide, NO2. In the thermal dissociation CI-MS instrument this reaction is reversed in a heated 

inlet and peroxyacyl radicals react with iodide anions, I‒, in an O‒ abstraction reaction. The 

resulting carboxylate anions are detected by quadrupole MS or ion trap MS.124 Thermal 

dissociation-CI-MS was originally assumed to be highly selective but recent studies suggest that 

carboxylate anions may also be formed via secondary proton abstraction reactions from organic 

acids125 and via OH‒ abstraction reactions from peroxyacetic acids.126 
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In conclusion direct CI-MS techniques are efficient for the detection of many organic gases in 

the atmosphere, and even their identification if coupled with high-resolution MS. Their strong 

advantage is the fast measurements and they are also very complementary to other techniques for 

the identification of organic gases such as GC/MS. 

Besides CI-MS techniques PI-MS techniques were applied to the detection of organic 

compounds in the gas phase. Because PI is largely fragmentation-free isobaric compounds with 

different elemental compositions are separable if the mass resolution is sufficiently high. Isomeric 

compounds can even be separated by MS by tuning the PI wavelength. A relatively large number 

of PI-MS applications deal with on-line monitoring of pyrolysis and combustion gases. From the 

beginning of this century the sensitivity of jet-resonance-enhanced multiphoton ionization, which 

has originally been applied in emission investigations,95a has increasingly been used in ambient 

atmosphere applications.127 Aromatic compounds were investigated in the sub-ppb range applying 

jet-resonance-enhanced multiphoton ionization using a time-of-flight mass spectrometer 

downwind of a road.128 

c) Direct MS techniques for aerosols: The Aerosol Mass Spectrometer (AMS)  

The Aerodyne Aerosol Mass Spectrometer (AMS) was developed for the on-line measurement 

of organic and inorganic components of aerosols.129 The principle of the instrument is to draw 

particles into a vacuum chamber130 and impact them on a tungsten surface (molybdenum in early 

versions) heated to 600 °C prior to being analyzed by 70 eV EI-MS. Most of the gas material is 

removed by differential pumping. As explained above, while the 70 eV EI energy implies 

extensive molecular fragmentation, it ensures the ionization of nearly all molecules, organic and 

inorganic, and the compatibility of the data with existing mass spectral databases. The mass 

spectrum for the aerosol sample is derived by subtracting an internal background obtained from 
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periodically blocking the particle beam. But as it contains contributions from both the 

nonrefractory particles (those evaporating on the impaction plate) and from the air that was not 

skimmed off, these contributions are removed by using a ‘fragmentation table’ approach, where 

marker peaks in the mass spectra are used to quantify these components.131 For other aspects of 

quantification, the reader is directed to Ref.129b 

Marker ion analysis 

Because of the two-stage desorption and ionization process the AMS mass spectral data is a 

quantitative, linear combination of the contributions of the various particle components. It is thus 

possible to gain quantitative information on the overall organic composition and contributions 

from various sources. One of the simplest forms of analysis is the determination of the fractional 

contribution of key peaks to the total organic mass concentration. Because m/z 44 mainly 

corresponds to CO2
+ from the thermal decomposition of dicarboxylic acids and multifunctional 

compounds,132 the fractional contribution of m/z 44 can be taken as a proxy for the oxygen content 

of the organic fraction.133 When this is compared with the fractional contribution from m/z 43 

(C3H7
+ from aliphatic chains and C2OH3

+ from alcohols, monocarboxylic acids and carbonyls) 

correlations with the general level of atmospheric processing of the organic material can be 

seen.134,135 Similarly, the fractional contribution of m/z 60 (associated with anhydrosugars such as 

levoglucosan, mannosan, and galactosan) can be used in conjunction with m/z 44 to monitor the 

evolution of biomass burning aerosols.136 

Multi-component analysis (MCA) and positive matrix factorization (PMF) 

Beyond bulk properties, it is also desirable to quantify the contributions of different sources to 

the organic aerosol mass. One of the first methods for this application used the fragment ion at m/z 

57 (C4H9
+ from alkanes) and at m/z 44 as the basis for deriving estimates for ‘hydrocarbon-like’ 



40 

 

and ‘oxygenated’ organic aerosol, respectively (HOA and OOA).137 These data were found to 

correlate well with traffic emissions and secondary sources.138 A modification of this technique 

known as multi-component analysis allows the identification of a second component of OOA 

through the analysis of residuals.139 These two types of OOA have been linked to SOA in various 

stages of atmospheric processing and with different volatilities.140 

A more general approach was developed with the use of PMF,141 a technique imported from 

source apportionment methods. Its principle is to identify a number of model contributions, or 

‘factors’, to the overall mass spectrum and to decompose the latter in (weighted) linear 

combinations of these factors by inverting the corresponding matrix.142 The model factors are 

obtained in separate characterizations of known sources such as biomass burning and cooking.143  

While this approach gives a greater confidence in the analysis of the spectra144 some cases may 

be difficult to resolve when a significant number of mass spectral features are in common between 

factors, such as cooking and exhaust particles (redundant matrix terms leading to an infinite 

number of solutions). Generally, the confidence on the results depends on the accuracy of the target 

profiles. 

Comparison with other techniques and instrument variations  

A major advantage of the AMS and other on-line MS techniques over off-line techniques is their 

time resolution. While the AMS is normally operated at a resolution of minutes for ambient 

sampling, sub-second data can be obtained if necessary, for instance for aircraft measurements.145 

An additional strength lies in the quantification of the overall organic fraction rather than in the 

identification of specific chemical species. While some species such as methyl sulfonate,87,146 

PAHs,147 methyl furan,148 and caffeine,149 are unambiguously identified based on unique ions, they 

are exceptions rather than the rule. Trends in specific ions can be taken as indicative of functional 
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groups or source types and as these signals are quantitative they can be used for a mass budget 

analysis. Such source quantification efforts are especially effective when combined with more 

compound-specific techniques. For instance, off-line two-dimensional GC (GCxGC)/MS of filter 

samples105 to identify methyl furan at m/z 82 while gas-phase PTR-MS provided evidence for 

isoprene oxidation, supporting its identification as a marker for SOA from isoprene.  

While the initial versions of the AMS used quadrupole mass filters, a major improvement of the 

technique occurred by using TOF mass filters150,151 and later high-resolution (HR) TOF systems.152 

This improved the ∆m/m resolution to around 2000 ‒ 4000 and allowed for the elemental analysis 

of the ions and the resolution of peaks with multiple contributions such as C2OH3
+ and C3H7

+ at 

m/z 43. The instrument can thus generally resolve pure hydrocarbon peaks from oxygenated peaks 

up to around m/z 100, and some nitrogen- and sulfur-containing peaks.153 

High-resolution data can also be used to quantify the elemental abundance by comparing signal 

intensities113b of ions of different elemental compositions. The apparent abundances of elements 

can be biased by losses of neutral and negative fragments and positive fragments such as H2O+ and 

CO+ can be confounded by interferences from other particle- and gas-phase signals, so their 

contributions to the overall elemental composition must be estimated based on laboratory data.154 

While the accuracy of this method is limited in the case of individual organic species, these 

inaccuracies tend to average out in aerosol samples composed of a large number of different 

species.113b Therefore the derived elemental ratios (O/C, H/C and N/C) and associated organic 

matter fractions should be seen as estimates of the ensemble, not as direct measurements of 

individual molecules. 

In conclusion, the identification of unknown compounds with the AMS is generally achieved 

with very large I factors, in the range of >102, and is not the main strength of this technique. 
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Milder ionization methods than 70 eV EI have been evaluated to gain additional chemical 

information, such as vacuum UV (VUV) photoionization155 using photons of around 10 eV energy 

(124 nm wavelength), and thus limiting fragmentation. However, to date, this has only been 

achieved with a synchrotron source and has not been applied to atmospheric sampling. 

d) Direct MS techniques for aerosols: single particle mass spectrometry 

Single particle mass spectrometry is similar to other on-line aerosol mass spectrometric techniques 

in that particles are drawn into a vacuum chamber to form a particle beam before being desorbed 

and analyzed on-line by MS. However, the use of a pulsed laser vaporizing individual particles 

allows to obtain mass spectra for individual particles.156 Numerous instruments employing these 

principles exist, many having been custom-made at research institutes.157 The most common 

commercial version of this instrument is the aerosol TOF mass spectrometer158 (ATOFMS) from 

TSI Inc. but others exist such as the Livermore Instruments Inc. single particle aerosol mass 

spectrometer and the Aeromegt laser ablation of aerosol particles time-of-flight mass spectrometer. 

Examples of bespoke instruments include the particle analysis by laser mass spectrometry159 

instrument, the single particle laser ablation time-of-flight mass spectrometer160 and the nano-

aerosol mass spectrometer,161 among many others.  

Single-step techniques 

The simplest form of operation of the instrument is combined laser desorption and ionization 

(LDI).162The light from a laser is used to detect the presence of a particle, which triggers the LDI 

laser (typically an ultraviolet excimer, e.g., ArF at 193 nm, or a frequency-quadrupled Nd:YAG at 

266 nm). The particle components both desorb and ionize and the data collection by the time-of-

flight mass spectrometer, either in positive and negative ion, is initiated by the laser pulse. The 

real-time, single-particle nature of the measurement means that it can bring unique insights into 
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key atmospheric processes such as nucleation163 or aerosol-cloud interactions.164 Also, unlike 

thermal vaporization, LDI allows for the study of refractory species such as oligomeric material 

that is difficult to analyze with other techniques.165 

However the main disadvantage of the technique is that the particle components can interact 

during the vaporization/ionization process, known as ‘matrix effects’, and result in variable 

ionization efficiencies and signal intensities.166 Thus, the mass spectral response of different 

atmospheric aerosol constituents can be highly variable. In addition the relative lack of control in 

the desorption and ionization processes make the identification of organic species by single-step 

LDI non-reproducible. Some information on functionality is retained in the mass spectral 

fragments167 and can be used for source apportionment167b,168 or the identification of organic 

molecules such as amines,169 organosulfates,170 and aromatics.171 However, a more sophisticated 

characterization of organic compounds with LDI-MS techniques is generally not possible and their 

I factor is thus as high as for AMS, in the range of >102.  

Two-step techniques 

To avoid the matrix effects of single-step LDI, the desorption and ionization processes can be 

separated by using two laser pulses. The first one, which can be produced by an infrared laser (e.g., 

CO2), evaporates the particle and generates a neutral vapor, and is rapidly followed by a second 

pulse from a UV laser to photo-ionize the vapors.172 The obtained mass spectra are more 

reproducible and quantitative.173 The drawbacks for atmospheric applications174 are that sensitivity 

can be significantly reduced and that the technique is not as sensitive to refractory species as single-

step LDI. This makes it generally less applicable to atmospheric aerosols and more suited for 

laboratory studies, which are less accessible to single-step LDI. In particular, particles can be 
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partially vaporized and their internal structure can be probed.175 Less energetic lasers can also be 

used to limit the extent of fragmentation during ionization.176  

The first laser can also be replaced with a heated surface, as in the Aerodyne AMS, but still using 

a laser or VUV lamp for photoionization.96,172b,177 Although the instruments can no longer be 

classed as ‘single particle’ this has the benefit of reducing thermal fragmentation without 

impacting the ability to detect and quantify organic molecules, as in the photoionization aerosol 

mass spectrometer.178 

Two-step single particle mass spectrometry thus provides limited data on MW and basic 

functionality compared to other mass spectrometric techniques due to the lack of chemical 

separation. However, its ability to study individual particles and their internal structure means that 

key aerosol processes179 and molecular diffusion within particles180 can be studied in ways not 

otherwise possible.  

e) Isotopic separation in aerosols 

An alternative approach to the methods discussed above to characterize the wide complexity of 

organic material in aerosols is isotope analysis, which can be applied to the bulk or to individual 

compounds. The principle is to measure the isotopic fractionation between isotopic pairs such as 

2H/1H, 13C/12C, 15N/14N, 18O/16O, or 34S/32S with isotopic-ratio mass spectrometry and with high 

precision rather than high mass resolution.181  The results are expressed as an isotopic shift relative 

to a reference, such as:  

δ13C = [(13C/12Csample - 13C/12Cstandard)/13C/12Cstandard] × 1000 (‰),  (Eq. 3). 

For instance, for δ13C the standard reference is Pee Dee Belemnite. These isotopic shifts, or 

fractionation, reflect kinetic isotope effects (KIE), i.e., differences between the rates of the 

reactions with the heavier and lighter isotope, which are involved in a number of processes such 
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as volatilization, chemical reactions, and condensation (Figure 4). Thus they can reflect the degree 

of atmospheric processing of the organic compounds in gas or aerosol bulk or as individual 

compounds.181-182 The identification of sources is also possible if some precursors have different 

isotopic compositions (see below the Section “Characterization of the bulk: source 

apportionment”).  

Identification at the molecular level: characterization processes  

The identification of isotopic signals at the molecular level is often limited because isotopic-

ratio MS systems are optimized towards high precision and accuracy of the isotopic signal (e.g., 

better than ±0.1‰ on δ13C) but not compound identification. The separation of individual 

compounds for isotopic-ratio mass spectrometry is based on chromatography techniques, i.e., GC 

and LC (Chapter 4.2). Because of the low natural abundance of the isotopes of interest (13C, 2H, 

etc.) the achievable factor I is limited by the quality of the chromatographic separation and the 

amount of sample available for the measurement. Hence, only major organic aerosol components 

have been investigated by compound-specific isotope analysis in laboratory and ambient air. 

In chamber experiments stable isotope measurements are employed either to determine the 

signature KIE’s for specific processes, to apply them later to atmospheric aerosols, or for the 

investigation of mechanisms and rate constants of complex reactions by adding an isotopically 

depleted or enriched precursor.183 Thus, it was shown that progressively enriching β-pinene with 

the heavy carbon isotope increased the partitioning of its ozonolysis product, nopinone, into the 

aerosol phase and resulted in the enrichment of its δ13C by 2.3‰ compared to the gas.183f The KIE 

of β-pinene enrichment during this reaction was also found to have a significant temperature 

dependence, larger enrichment taking place at lower temperature.184 An enrichment of δ13C for the 

unreacted oxalic acid was showed in the aqueous-phase photolysis of oxalic acid in the presence 



46 

 

of H2O2 and UV,185 but only in the presence of Fe species catalyzing Fenton reactions. These 

studies indicate that, even in laboratory, the understanding of the KIE resulting from various 

reactions and processes requires further investigation. In addition, the enrichment factors and KIE 

determined in laboratory are usually limited to specific compounds and experimental conditions, 

and difficult to apply to other systems.186 Nevertheless, some mechanisms have been successfully 

elucidated using these approaches, such as the uptake of the heavy oxygen isotope into 

dicarboxylic acids, oxocarboxylic acids, and hydroxyketocarboxylic acids in the ozonolysis of 

monoterpenes in the presence of 18O-enriched water vapor.187 These results clearly indicate a direct 

implication of H2O in the ozonolysis mechanism. 

The measurement of stable isotope fractionation in the atmosphere has mostly been applied to 

small carboxylic acids, and in combination with ion chromatography (IC) or high-performance LC 

(HPLC) to the separation and collection of the fractions of interest. A correlation between the δ13C 

of gaseous formic acid and ozone concentrations was observed in the atmosphere.188 However, 

similar correlations for particulate-phase oxalic acid were small or insignificant, probably because 

of opposite isotopic shifts resulting from the gas reaction (ozonolysis producing the acids) and the 

aerosol formation processes. These results confirm the challenges in using quantitative compound-

specific isotope analysis to investigate atmospheric aerosols and further studies are needed to 

assess the feasibility of this approach.   

Isotope analysis has been used more frequently for source apportionment than for mechanism 

investigation, for instance to distinguish between continental and marine oxalate by their δ13C in 

size-segregated aerosols in Bermuda.189 The use of both 13C and 14C isotope measurements 

provides more information. For instance, when applied to formic and acetic acid this analysis 

revealed a mainly biogenic (as opposed to anthropogenic) origin of air masses at several European 
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sites.190 But since both chemical processing and source characteristics influence the isotopic 

fractionation  the differentiation between these factors is often difficult.191 

Characterization of the bulk: source apportionment 

Isotope measurements of bulk aerosol fractions are mainly dedicated to source apportionment 

and sometimes to the monitoring of the extent of secondary aerosol formation.182,191-192 For the 

source apportionment of organic aerosols 13C is the most employed stable isotope, and has been 

shown to display differences between plants with C3 and C4 biochemical mechanisms of carbon 

fixation in photosynthesis, marine and continental organic and liquid, solid and gaseous fuels.182,193 

However, these differences are often small compared to the natural variability of individual 

sources. Thus, for the investigation of organic aerosol precursors, isotope measurements have been 

performed on aerosol fractions enriched with secondary material, such as WSOC or humic-like 

substances (HULIS).182,193b,194 The apportionment is often only semi-quantitative if a single 

isotope is considered but can improve with a multi-isotope approach.182,193b,195 Another example 

of apportionment is the distinction between fossil, biogenic or biomass burning sources using the 

long-lived radioisotope radiocarbon (14C).196 In particular 14C provides a robust attribution between 

fossil and non-fossil sources.182,190,194,197 For example, radiocarbon measurements of OC were 

compared with model results196c and showed that non-fossil OC mainly stemmed from regional 

biogenic SOA, primary and secondary biomass burning aerosols, and primary and secondary non-

fossil urban aerosols. In combination with aerosol mass spectrometry, 14C analysis enables source 

apportionment of fossil vs. non-fossil precursors for SOA-related factors such as low-volatile and 

semi-volatile oxygenated organic aerosol.198 
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Thus the combination 13C and 14C isotopes may provide deeper insights on sources and 

processes, such as the simultaneous distinction between marine, continental biogenic and fossil 

sources or the estimation of primary and secondary sources of marine aerosols.193b 

4.2. Multidimensional techniques  

As pointed out in the previous sections, only a very limited number of one-dimensional 

techniques can achieve a satisfactory structural identification (I <10), and for limited classes of 

atmospheric organic compounds. To identify a wider range compounds or complex ones, it is often 

necessary to combine several techniques, including some presented above. This combination 

dramatically lowers the overall I factor of the analysis, to reach generally a few units (I 5). 

A powerful and widely-used tool to characterize complex samples is to combine 

chromatographic separation techniques with sensitive and specific detectors. These approaches 

allow to identify compounds in complex matrices and to distinguish isobaric compounds (i.e., 

compounds with the same nominal but a different exact MW)199 or, in some cases, even isomers 

that cannot be distinguished with the direct MS techniques described above. Two-dimensional 

chromatography, e.g., in GC or LC, can further increase the resolving power for components with 

similar physical chemical properties, by combining different separation mechanisms.  

In this section, techniques combining chromatographic separation and a detector (e.g., mass 

spectrometry) or techniques involving two or more stages of gas chromatography (i.e., GCGC) 

or mass spectrometry (i.e., tandem mass spectrometry) are defined as two- or multi-dimensional. 

The analysis of organic aerosols by GC- and LC-based methods presents several challenges 

because of their complexity and the occurrence of compounds spanning from non-polar to very 

polar compounds. Complex organic aerosols containing semi-volatile compounds have been 

successfully determined with GCxGC-based methods. Polar compounds containing hydroxyl, oxo 
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and carboxylic acid functions can be measured either with GC with prior derivatization or LC-

based methods, whereas polar compounds containing sulfate groups require LC-based approaches. 

Details and examples of such analytical tools are given below with their achievable I-factors. 

4.2.1. Separation  

The characterization of individual aerosol constituents in highly complex mixtures at the 

molecular level generally requires chromatographic separation. The two most employed 

techniques are GC, often with prior derivatization, and HPLC. The selection of a chromatographic 

column is crucial in the development of a suitable analytical method and must consider the 

chemical and physical properties of the analytes (volatility, polarity, molecular weight, solubility, 

etc.). In particular, if the polarities of the stationary phase and of the analyte are similar their 

attractive forces are strong and result in a better retention (compound appearing late in the 

chromatograms). The selectivity and resolution of a column are determined by the intermolecular 

forces between the stationary phase and the target molecules, including Van der Waals, hydrogen 

bonding, and dipole-dipole interactions. Its physical parameters, such as the thickness of the 

stationary phase, inner diameter and length, also need to be considered. Commercially available 

GC columns are based on stationary phases ranging from non-polar (100% dimethyl-

polysiloxanes)200 to increasingly polar ones, where diphenyl groups are incorporated (e.g., 5% 

diphenyl/95% dimethyl-polysiloxane)201 or which are functionalized (e.g., 14% 

cyanopropylphenyl/86% dimethyl-polysiloxanes).202 Columns with highly polar phases (e.g., 

polyethylene glycol-based)203 or specific materials, e.g., for the separation of chiral components 

(e.g., cyclodextrin-modified phases),39 are also available. 

Similar principles apply to LC analysis. However, its optimization is more flexible than for GC 

as not only the stationary phase but also the mobile phase of the column can be modified and is 
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participating in the separation process (while in GC the mobile phase only ensures the transport of 

the medium through the column). LC analysis can be used for any compounds soluble in a liquid 

phase. Many different types of separation can be achieved depending on the combination of the 

stationary phase and the mobile phase: polarity, hydrophobicity, electrical charge, and molecular 

size. The physical parameters of the column, such as its retention capacity (influenced by surface 

area, carbon load, pore size, volume of the packing material), size and shape of the stationary phase 

material, and dimensions (internal diameter, length) are also critical and need to be selected 

carefully.  

The most commonly applied LC technique is undoubtedly reversed-phase chromatography since 

it enables the separation of a wide range of polar and non-polar solutes (e.g., Ref.204,205,206,207). 

Other techniques include variations of normal phase chromatography for highly polar species such 

as hydrophilic interaction liquid chromatography (HILIC),208 or for specific applications such as 

ion exchange or size exclusion chromatography used for the characterization of HULIS.209  

Choosing the appropriate chromatographic separation technique for the chemical properties of 

the targeted compound usually leads to a high selectivity and high level of identification. While 

the obtained I-factors can vary, separation techniques are generally expected to achieve at least I 

3. 

4.2.2. Multidimensional techniques for gas analysis (GC and GCxGC) 

GC separation is suited to any volatile organic compounds and, in combination with various 

detectors, has been the technique of reference to measure organic gases in the atmosphere. It 

remains unsurpassed by other techniques such as PTR-MS, as it allows the detection of a much 

wider range of compounds than those undergoing chemical ionization. In combination with 
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preconcentration techniques it can also reach much lower detection limits. Finally it can even be 

used in semi-on-line mode with measurements frequencies up to 1/5 min. 

Commonly used detectors in combination with GC include the flame ionization detector (FID), 

often rather for quantification, the electron capture detector (ECD), sensitive to halogenated 

species,210 the nitrogen phosphorus detector for nitrated compounds,211 and a range of mass 

spectrometric techniques enabling more detailed structural characterization.30,34,212,213  

The organic gas samples collected by the various methods described in Chapter 3 are transferred 

to the GC instrument via a thermal desorption or solvent extraction step. Because of the low 

concentration of organic gases in the atmosphere this transfer often includes an additional 

preconcentration or enrichment step, e.g., cryofocusing, following a protocol specific to compound 

classes or chemical and physical properties.  

Derivatization 

For compounds that are not sufficiently volatile or thermally too labile to pass through the 

injector and/or the column, derivatization procedures can be applied to the samples prior to their 

analysis by GC. Derivatization consists in reacting the analyte with a derivatization reagent to 

produce specific compounds that can be observed by the detector, such as characteristic ions when 

using mass spectrometric detection.214,215 Derivatization can also increase the specificity of the 

analysis and the level of identification of certain compounds, such as mid- and larger-chain (>C10) 

or multi-functionalized ones. The derivatization step often takes place prior to the transfer of the 

sample to the GC instrument, although post-column derivatization protocols exist. Examples of 

the most common derivatization reagents are summarized in Table 5. Usually, they target specific 

classes of compounds such as carboxylic acids, carbonyl compounds, or hydroxylated compounds. 

In particular the derivatization of gaseous carbonyl compounds has been of considerable interest 
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in atmospheric science. One of the most commonly used derivatization reagents in this field of 

application is O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride. 
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Table 5. Overview of derivatization reagents commonly used in GC and LC analysis. Acronyms: see list of abbreviations; additional acronym: 

SFE: solid-phase extraction.  

Principle Targeted compound class Derivatization reagent Analytical technique Reference 

Alkylation carboxylic acid and other 
compounds with active hydrogen 

diazomethane GC/MS 213, 36, 216  

  BF3 in methanol GC/MS 217, 218, 34 

  BF3 in butanol GC/MS 219, 220, 221 

  pentafluorobenzyl bromide  GC/MS 
SFE-LC-GC/MS 

222, 223 
224 

  tetrabutylammonium hydroxide  
tetramethylammonium hydroxide /tetrabutylammonium 
hydroxide  

GC/MS 
 
GC/MS 

225 
 
226 

Silylation alcohols, carboxylic acids and other 
compounds with active hydrogens (-
NH, -NH2, -SH groups) 

bis-trimethylsilyltrifluoroacetamide /1% trimethylchlorosilane/ 
pyridine 

GC/MS 213, 227 

  N-methyl-N-trimethylsilyltrifluoroacetamide containing 1% 
trimethylchlorosilane 

GC/MS 228, 229 

  trimethylsilylimidazole  GC/MS 230, 231 

Acylation carboxylic acid and other 
compounds with active hydrogens (-
OH, -SH, -NHR groups) 

acetic anhydride /4-dimethylaminopyridine in pyridine GC/MS 232
 

Oxime 
formation 

carbonyl compounds O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride  GC/MS 233
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Principle Targeted compound class Derivatization reagent Analytical technique Reference 

Hydrazone 
formation 
 

carbonyl compounds 2,4-dinitrophenylhydrazine  HPLC/MS 234, 235 

Oxime 
formation 

carbonyl compounds hydroxylamine  236  

 amines 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate / NaOH HPLC/MS 237
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This reagent enables the identification of multifunctional carbonyl compounds, such as those 

produced by the oxidation of isoprene, which can be then identified by MS techniques such as ion 

trap MS.238 Other derivatization procedures used in combination with GC analysis include those 

for amines,239 amino acids,240 or more specific compounds.241  

Because derivatization implies a chemical reaction it can also trigger side reactions, which can 

interfere with the structural assignment of the analyte. This is especially critical when investigating 

unknown and/or multi-functionalized compounds. In these cases, alternative approaches can be 

necessary such as the use of different derivatization procedures222,242 on different samples in the 

same series, or the derivatization of different fractions of a sample that was first fractionated by 

flash chromatography243 prior to GC/MS analysis.244 More common approaches include multi-step 

derivatizations, which target the different hydroxyl, carboxylic acid, and/or keto- or aldehyde 

groups of multifunctional compounds. Generally, the carboxylic acid group(s) are esterified first 

to methyl esters, followed by trimethylsilylation of the non-acidic hydroxyl groups and/or an 

additional conversion of keto- or aldehyde-groups into oxime derivatives.245 In particular, this 

approach has led to a better characterization of monoterpene-derived246 and toluene photooxidation 

products.247 Another approach is to combine different types of ionization techniques in the GC/MS 

analysis, such as electron and chemical ionization. Comparing the different types of mass spectra 

usually leads to a higher level of identification, chemical ionization spectra identifying mainly the 

molecular mass of the derivative(s).245 The combination of derivatization and comprehensive mass 

spectral characterization is a powerful tool leading to I factors as low as 2. 

On-line applications 

In the past decades methods have been developed to reduce the long times usually required for 

GC analysis, leading to real-time field semi-on-line instruments and enabling comparisons with 
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important atmospheric species such as ozone, carbon monoxide or NOx. Those include coupling 

of GC with real-time detection techniques, such as PTR-MS248 or the direct coupling of fast 

extraction techniques to the analytical instrument, leading to high time-resolution.249 Such fast 

extraction techniques include the use of supercritical CO2, which is chemically inert, has a low 

toxicity, and is available in high purity. Another advantage is that the critical point of CO2 is easily 

accessible at 31.1 °C and 72.9 bar, where it behaves as a gas in surface tension and as a liquid in 

density. The first applications of this technique to atmospheric aerosols were reported in the 

1990s.250 In combination with in-situ derivatization this technique has been shown to allow the 

identification of poly-functionalized species such as dicarboxylic acids, oxo-acids and hydroxyl-

acids in the ozonolysis of sabinene.251 Other fast extraction techniques that have been directly 

coupled to GC and applied to bulk aerosol analysis include Curie-point pyrolysis252 and other 

thermodesorption techniques.253 For Curie point pyrolysis the sample is applied onto a foil of a 

ferromagnetic metal and rapidly heated by induction. When reaching its Curie-point temperature 

the metal becomes paramagnetic and enables a fast and controlled evaporation of the analytes into 

the GC instrument. This technique has been applied to e.g., PAHs,252, alkanes,254 and, with an 

additional derivatization step, organic acids.255 Other thermally-assisted extraction methods256,257 

combined with derivatization have been described226,258 and offer powerful tools for the 

identification of unknown compounds. In particular, a field deployable thermal desorption aerosol 

gas chromatograph (TAG) using both FID and MS and enabling high time-resolution for aerosol 

analysis has been developed.259 This instrument incorporates a custom-designed inlet where the 

aerosols are collected and thermally desorbed into the GC column. The system is automated and 

allows for continuous speciated measurements of organic compounds in aerosols every hour. The 
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inlet has recently been modified to allow less volatile gases and particles to be measured 

simultaneously,260 thereby allowing to study their gas-particle partitioning.  

Thus, the semi-on-line GC techniques described above are valuable tools for real-time 

monitoring of organic compounds both in the gas and particle phases, and nicely complement other 

on-line techniques such as PTR-MS and AMS.    

GCxGC 

Two-dimensional gas chromatography is a powerful tool to improve the identification of organic 

compounds in complex mixtures, both in the gas and in the condensed phase.261 It consists in 

coupling two GC columns in series,262 generally functioning on different separation 

mechanisms.263 The chromatograms are usually represented with the retention times for each 

column in x- and y-axis, respectively, and the peak height as colored contour. GCxGC is often 

coupled with either a flame ionization detector (for quantification) or a mass spectrometer, usually 

a TOFMS instrument (for identification).264 Better selectivity has been sought by using more 

element-specific detectors such as a nitrogen chemiluminescence detector265 and a nitrogen 

phosphorus detector, which have been applied to 15 organic nitrogen species.266 But while 

targeting specific compounds (here nitrogen-containing ones), it does not provide structural 

information such as that typically provided by mass spectrometry.  

The better identification level compared to classical one-dimensional GC267 results from the fact 

that fewer compounds co-elute, providing cleaner mass spectra and corresponding to a unique set 

of three independent variables (retention time 1, retention time 2 and mass spectrum). This 

technique thus has the potential for full identification (I = 1) but can also provide useful partial 

structural information using the structured nature of the chromatograms, where isomers, such as 

linear and branched alkanes, are grouped together. The first GC×GC analysis of VOCs in air was 
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performed with a flame ionization detector and showed that much of the hydrocarbon loading in 

an urban atmosphere was unaccounted for using conventional one-dimensional GC-FID 

techniques as many species at low concentrations co-elute to form a raised baseline. Later studies 

reported the mono-aromatic composition of gasoline, gasoline vapors and urban air samples using 

GC×GC-FID with a simple cooled loop injection and that many of the larger aromatic species 

present in gasoline vapor were also present in urban air. A total of 147 mono-aromatic isomers 

were isolated from a polluted urban air sample and were calculated to be a potentially significant 

source of tropospheric ozone. GC×GC has subsequently been used in a range of studies of 

atmospheric composition at locations with different sources and degrees of aging.  

In spite of all these examples the use of GCGC by the atmospheric community as a routine 

instrument has been slow, in part due to difficulties with quantification and because the large 

number of species that can be separated creates data handling problems. 

4.2.3. Multidimensional techniques for aerosol analysis  

a) GC-ECD and GC/MS 

A large part of the GC techniques discussed in the previous section also apply to the analysis of 

aerosols, in particular GCGC. Initial studies of organic aerosols by GCGC resulted in the 

separation of over 10,000 organic compounds including alkanes, alkenes, cycloalkanes, n-alkane 

acids, alkyl- and alkenyl-substituted aromatics, polar benzenes, PAHs, and oxy-PAHs.268,269 The 

complex amount of information gained from comprehensive techniques is associated with difficult 

and time-consuming data analysis. Recently profiling of complex aerosol samples has been done 

applying advanced scripting methods based on properties of the mass spectra.270 Important areas 

of application of GC×GC are the identification of chemical markers and oxidized products, as the 

oxidized material can be separated from the rest of the sample by using a polar second column, 
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such as 50% phenyl polysilphenylene siloxane or polyethylene glycol columns. New oxidation 

products and pathways have been identified by this technique in chamber experiments. This 

technique has also proven very efficient for the analysis of atmospheric samples, with over 100 

oxidized species observed, many linked to aromatic precursors, in filter samples from a roadside 

in London.271 Similarly, over 50 organic compounds including oxygenated monoterpenes and 

previously unknown oxidation products of -pinene were identified in organic aerosols from a 

coniferous forest in Finland.272 Oxidation products of naphthalene and phenanthrene were also 

identified in PM2.5 samples from Seoul, South Korea.273 GCxGC has also been used to identify 

markers for primary sources such as manufacturing processes274 (Figure 5) and wood 

combustion,275 and for the size-resolved analysis of particles collected by a differential mobility 

analyzer in a boreal forest in Finland, evidencing less compounds but higher proportion of 

hydrocarbons, aldehydes, halogenated and nitrogenated compounds in smaller particles (30 nm) 

than in larger ones (50 nm).276  

In addition to the laboratory instruments described above two-dimensional GC×GC 2D-TAG,277 

for instance with a TOFMS detector,278 can provide mass spectral data with high time-resolution 

based on the same principle. If authentic standards or mass spectral libraries are available this 

instrument can provide full identification (I = 1) of organic aerosol components while enabling the 

investigation of time-dependent processes such as sources, aerosol aging and correlations with 

important atmospheric species such as VOCs, ozone, carbon monoxide, and NOx.279 Other 

advantages of this instrument have been demonstrated in laboratory, such as information on the 

volatility and extent of aerosol oxidation during sesquiterpene ozonolysis, without identifying 

individual species.280 

b) IC and IC/MS 
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Ion chromatography was developed already in the 70’s and is still the leading analytical 

technique for trace analysis of ionic compounds, both inorganic and organic ones, in all types of 

environmental samples. As it offers a simple, reliable and inexpensive separation and 

determination for organic ions in complex mixtures it is also usually the first choice for the 

determination of low-MW organic acids in atmospheric aerosols and aqueous (cloud, fog, rain) 

samples.  

The prerequisite that the analyte produces water-soluble ions makes of IC a rather selective 

analytical technique. Ion chromatography is based on two possible separation mechanisms, ion 

exchange and ion exclusion. The former is typically used for polar organic compounds such as 

low-MW dicarboxylic acids,281 while the latter is generally applied to less polar organics such as 

weak acids.282,283 Early versions of IC instruments were coupled with UV detectors,284 while 

nowadays conductivity detectors are mostly employed.285 For special applications, such as 

atmospherically-relevant carbohydrates (sugar alcohols, monosaccharides and monosaccharide 

anhydrides), high-performance anion exchange chromatography coupled to pulsed amperometric 

detection can be used.286  

Ion chromatography can be used off-line or semi-on-line. In off-line configurations the 

particulate samples, collected on filters or cascade impactor foils, are first extracted in water, 

filtered and then injected onto the IC column.253 In semi-on-line configurations the sampling 

system is directly connected to the IC instrument and allows for the real-time detection of organic 

compounds. Examples of such semi-on-line sampling systems include particle-into-liquid sampler 

(PILS),287,288,289,290,291 wet effluent diffusion denuder/aerosol collector292,293 and ambient ion 

monitor-ion chromatography system.294 
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The atmospheric organic compounds identified by IC include water-soluble low-MW organic 

acids present in atmospheric aerosols, the most common being monocarboxylic (i.e., formic, 

acetic, pyruvic and glyoxylic acids), dicarboxylic (i.e., oxalic, succinic, fumaric, malic, tartaric, 

glutaric, maleic, malonic, α-ketoglutaric and oxaloacetic acids) and tricarboxylic acids (i.e., citric 

and cis-aconitic acids).281,285,293,295 Some aromatic acids (i.e., phthalic, syringic, 3-hydroxybenzoic, 

4-hydroxybenzoic, vanillic and isovanillic acid) have also been identified in aerosol particles from 

smoke samples,253 and methanesulfonic and methanesulfinic acids both in ambient aerosols and in 

chamber studies.296,297 More recently IC has been applied to the detection of saccharide markers 

in biomass burning aerosols, such levoglucosan, mannosan and galactosan, in pollen, such as 

inositol, glucose, galactose and fructose, and in fungal spores, such as erythritol, arabitol, and 

mannitol.286,298 IC has also been used for the detection of aliphatic amines such as methyl-, 

dimethyl-, trimethyl-, ethyl-, diethyl- and triethylamine,294,296,299,300,301 although the column used 

(Dionex CS-17) did not allow the separation of trimethyl- and dimethylamines.294 

Examples of on-going and promising further applications of IC include its coupling with 

electrospray ionization high-resolution mass spectrometry allowing the identification of polar 

ionizable organic compounds that are otherwise difficult to determine by LC/MS.302,303 This type 

of coupling, combining the high selectivity of IC with the structural identification potential of MS, 

is very promising for the full identification of low-MW carboxylic acids,304 as the IC separation 

would reduce the number of eluting compounds, thus facilitating the interpretation of the mass 

spectra, and enabling the MS differentiation of co-eluting compounds.  

However, there was only a few attempt to couple IC with MS, especially in atmospheric 

science.292,305 Examples include the determination of the total anionic composition of urban 

ambient aerosols.306 Although this approach leads to the identification of more than ten organic 
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acids (e.g., glycolic, acetic, lactic, formic, methanesulfonic, pyruvic, malic, malonic, oxalic, o-

phthalic) with a AS-15 column and two co-eluting ones (malic and succinic), with an ICE-AS6 

column several peaks remained unknown and many more compounds, mostly organic acids, 

unresolved. IC/MS coupling was also used for the identification of organic acids in the gas and in 

aerosols during the photooxidation of trimethylbenzene and propene in smog chamber 

experiments. The sampling was made with a wet effluent diffusion denuder/aerosol collector 

connected to the IC.292 The fractions collected after IC separation (on a AS11-HC column) were 

analyzed by APCI-MS using a quadrupole mass analyzer with atmospheric pressure ionization for 

the identification of unresolved organic acids. Series of mono- and di-carboxylic acids, i.e., from 

formic to citric acid (I = 1), were thus unambiguously identified and the MW of a number of 

unknown compounds up to 234 were determined.  

Recently, another coupling approach of IC and ESI-MS was successfully applied to the analysis 

of reaction products (pyruvic, succinic, malonic, oxalic, mesoxalic acid) in the oxidation of 

methylglyoxal (Figure 6) and acetic acid,305a,307 and in the photochemical aging of isoprene SOA 

in aqueous phase.305b Equipping the IC instrument with a membrane ion suppressor (e.g., ASRS-

ultra suppressor operated in external water mode) eliminated the sodium ions from the mobile 

phase and increased the sensitivity of the MS detection by avoiding the formation of uncharged 

species in the interface.308 Other set-ups are based on the combination of IC, ESI-MS305b,308 and 

UV detection.302,303 

c) CE/MS  

Capillary electrophoresis is an alternative to GC or LC as its separation is based on different 

principles and is more efficient. To be detected by this technique the analyte must be ionizable as 

the separation is achieved by a strong electrical field and the resulting retention times depend on 
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the electrophoretic mobilities of the compounds. With this technique both inorganic and organic 

ions, such as carboxylic acids,252,309,310 can be separated in a single run. Other advantages, 

especially for atmospheric applications, include the requirement of only small sample amounts, 

such as a single drop of rain or fog,311 the broad linear detection range, and the absence of extensive 

sample preparation, even for complex compounds such as HULIS.312,313 CE is usually coupled 

with UV-Vis310,311 or conductivity detectors,314 but coupling with MS has also been 

performed.315,316,317,318,319,320,321 However, the buffers used in CE separation can interfere with the 

MS ionization process and the use of sheath liquid can lead to a loss of MS sensitivity. The second 

problem could be avoided by coupling CE to nanospray interfaces. Examples of coupling of CE 

with high-resolution MS315 or MS2 have been reported320 and should lead to the identification of 

unknown compounds with low I-factors (<5).  

Taking advantage of the small amounts of sample required, several miniaturizations of this 

technique have been developed for the purpose of field applications and semi-online analysis. 

Those include the usage of microchip CE analysis322,323 and coupling to PILS samplers,324 which 

are promising approaches for routine analysis in the field. However, no structural characterization 

of organic aerosol components has been reported from these applications so far.   

d) LC-UV and LC/NMR 

While, as discussed in Section 4.1, UV-Vis spectroscopy is not specific and provides mostly 

bond/functional group identification (I ≥100) its coupling to liquid chromatography greatly 

improves the level of identification by adding information on retention times and the possibility to 

compare with reference standards. One of the early important applications of HPLC-UV-Vis to 

organic aerosols is the determination of toxic compounds such as PAHs, which are naturally strong 
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UV chromophores due to their aromatic structure. But this application has progressively fallen out 

of favor because of its poorer sensitivity compared with GC/MS methods.  

In addition to separation, derivatization can enable the detection of compounds that are not 

natural chromophores, and be very selective, resulting in I ≤10, by targeting specific functional 

groups. Numerous methodologies for HPLC/UV-Vis analysis with prior- or post-column 

derivatization have thus been developed and a number of selective derivatizing agents for 

carbonyl, hydroxyl, carboxyl or ester groups can be used. The most common derivatizing agent 

for carbonyl compounds (aldehydes and ketones) is 2,4-dinitrophenylhydrazine, which has been 

extensively used for their off-line determination in gas- and particulate-phase atmospheric 

samples.325,326,327,328 The studies of ambient samples show that the detection limits of this technique 

are comparable to those of derivatization-GC/MS methods.329 The organic compounds identified 

in atmospheric aerosols by this method span from low-MW carbonyl compounds, such as 

formaldehyde and acetone, to heavier compounds such as pinonaldehyde and substituted 

benzaldehydes.330 Further optimizations of this method include additional clean up procedures and 

coupling with tandem MS detection. The latter enhanced the selectivity (via multiple reaction 

monitoring) of the detection of the α-dicarbonyls glyoxal and methyglyoxal in ambient aerosol 

samples.331,234  

Other atmospherically-relevant classes of compounds that can be selectively detected by UV-

Vis spectroscopy include organic peroxides and nitrates. For instance, a thermal desorption particle 

beam mass spectrometer and HPLC/UV-Vis detection at 210 nm was used for the identification 

and quantification of organic nitrates in particulate samples.332,83b This method is interesting 

because organic nitrates play important roles in atmospheric chemistry but have been little studied 

because of the lack of suitable detection methods and standards. The method is very selective and 
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sensitive for alkyl nitrates since their molar absorptivity at this wavelength is much higher than 

that of alcohols, ketones, carboxylic acids, or alkenes.  

Finally, HPLC/UV-Vis coupled with MS detection is particularly attractive for the 

characterization of light-absorbing organic compounds in aerosols (brown carbon) as it allows to 

target a subset of compounds absorbing at specific wavelengths. This approach has been recently 

used in the study of nitrogen-containing compounds with chromophoric properties such as 

nitroaromatics and imidazoles.333,44 But the level of identification in complex mixtures remains 

low and coupling high resolution MS with HPLC/UV-Vis detection is necessary to increase it.80 

LC/NMR 

On-line coupling between LC and NMR was introduced for the first time in the early eighties 

but, although it is a powerful technique for the structural characterization of organics, its 

applications remain scarce compared to other LC-couplings because of the low NMR sensitivity 

and its high costs. However, the recent development of superconducting magnets, new probe 

technology (especially cryogenic probes), and efficient methods for solvent suppression have 

remarkably improved NMR sensitivity and encouraged its application in many fields. Beside 

numerous publications in pharmaceutical and food science, it has been recently applied to the 

investigation of the chemical composition of organic compounds in aerosols, where it can be used 

for the structural characterization of unknown compounds. Semi-preparative LC was used to 

isolate a series of nitro-aroamatic compounds, 4-nitroguaiacol, 6-nitroguaiacol and 4,6-

dinitroguaicol, produced by the aqueous-phase photonitration of 2-methoxyphenol, which were 

structurally identified by 1H-, 13C- and 2D-NMR, and ESI-MS2.334 These compounds were then 

collected and used as references for comparison with ambient aerosol samples. Reference 

compounds for biogenic secondary products were also recently produced by a similar approach: 
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semi-preparative HPLC/UV-Vis was used to obtain milligrams of pure pinonaldehyde and 

ketolimononaldehyde in the low-temperature ozonolysis of -pinene and limonene in 

dichloromethane.80 The isolated products were then characterized by 1H-NMR spectroscopy and 

high-resolution MS. Recently, the use of NMR for the quantification of SOA markers produced in 

laboratory was further exploited by isolating them by semi-preparative LC at sub-milligram 

levels.47 

Thus, the use of preparative LC coupled to NMR analysis can offer a high identification level, 

with I-factors = 1, but as a relatively high amount of a pure sample (ca. 10 g) is required this 

approach is limited to the most abundant species in aerosol. 

e) LC/MS and 2D-LC/MS 

LC/MS is one of the most robust analytical methods for the chemical characterization and 

quantification of highly and moderately polar organic analytes. In contrast to GC/MS methods 

where the critical factor for separation is the vapor pressure or boiling point of the analyte, LC 

separation is typically driven by the polarity strength of the individual component of the mixture. 

Since oxygenated organic compounds are abundant in atmospheric aerosols,140 LC/MS provides 

an interesting method to investigate the chemical composition and changes of these polar organic 

aerosol components.  

The reliability of the data obtained from LC/MS analysis depends strongly upon sample 

preparation and operating conditions. An important factor is to select the least destructive solvent 

for the analyte extraction. The use of polar solvents such as acetonitrile, water and a mixture of 

tetrahydrofuran/water, which are compatible with ESI are highly recommended. However, for 

certain organic mixtures, such as isoprene-derived SOA constituents, methanol was found to be 

the most efficient for filter extraction.335 It has thus been widely used for the extraction of these 
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and other polar organic constituents from filters.31,36,204,335-336 But potentially detrimental features 

of this solvent have been recently evidenced by the loss of some carboxylic acids, such as terpenoic 

acids, probably by reaction between the solvent and the analytes.337 

In laboratory, LC/MS techniques have been used to investigate SOA formation and aging in from 

a range of precursors,187,335-336,338 including glyoxal,339 methylglyoxal305a,307 methyl vinyl 

ketone,340 glycolaldehyde,341 and acetic acid.307 LC/MS techniques have also been critical to 

identify organosulfates and their nitrated derivatives (nitrooxy organosulfates) in atmospheric 

samples, and reveal their large aerosol concentration.204,336d,342 Prior to 2005 organosulfates were 

largely missed because GC/MS techniques are not able to measure them due to their low volatilities 

and chemical instability to derivatization.204 Using LC/ESI-MS techniques in the negative ion 

mode provided the first molecular identification of organosulfates in coarse aerosol samples (i.e., 

particulate matter with an aerodynamic diameter ≤10 μm (PM10)). 343 This work was followed by 

other studies performing similar analyses in PM2.5 samples336c and by analyses of ambient PM2.5 

and laboratory-generated aerosols31,204,336d investigating the formation pathway for organosulfates 

in aerosols.31,336d,338c,342b,344 More recently LC/ESI-MS analyses have identified organosulfates 

produced in laboratory experiments35b,342a,344b,345 and in Arctic aerosols. However many challenges 

limit the application of LC/ESI-MS techniques, such as the lack of authentic standards for 

aromatic-derived organosulfates.346 Future work should focus on synthesizing these compounds. 

347  

f) Ultra-High-resolution MS (UHRMS) 

Ultra-high resolution MS (UHRMS) is a relatively new tool for the analysis of organic aerosols, 

which has two important features: (i) high mass resolving power and (ii) high mass accuracy, as 

defined in Chapter 4.1.2. High accuracy coupled with high resolution allows determining 
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unambiguous elemental formulae for each ion peak, which can, in turn, be used to characterize 

and categorize a large number of compounds present in complex organic mixtures. The organic 

fraction of atmospheric aerosols often contains hundreds to thousands of species in a m/z range of 

100 ‒ 500 and, frequently, more than 10 compounds are observed within 0.1 Da, clearly illustrating 

the necessity of high mass resolution techniques to investigate its chemical composition. 

There are three major types of high-resolution mass analyzers: the Fourier transform ion 

cyclotron (FTICR), the Orbitrap and the high-resolution quadrupole  (Q) TOF (HR-Q-TOF). 

FTICR offers the best resolving power with a record resolution of 40,000,000 that was reached for 

reserpine at m/z 609 at a magnetic field of only 7 Tesla.348 Orbitrap instruments have shown to 

provide resolving power in excess of 1,000,000 at m/z <300 – 400 within a 3 s detection time 

making it compatible with several types of chromatographic separations.349 Finally, HR-Q-TOF 

instruments have a fairly uniform resolving power of up to 40,000 across a m/z 100 – 500 mass 

range. 

Mass accuracy, on the other hand, strongly depends on various parameters including scan rate, 

signal-to-noise ratio, and resolving power of the instrument.92 Using appropriate internal mass 

calibration the highest mass accuracy is generally achieved by FTICR-MS (< 0.5 ppm), followed 

by Orbitrap MS (1−5 ppm), and by Q-TOF MS (1−10 ppm).  

The high resolving power of UHR mass spectrometers allows the characterization of thousands 

of organic species in a single mass spectrum by introducing the sample directly into the source 

without prior chromatographic separation.350 This technique is generally referred to as direct 

infusion. A range of soft ionization techniques such as ESI,351,352,353,354 atmospheric pressure 

photoionization,355 and a variety of atmospheric pressure surface ionization methods e.g., nano-

DESI356 and liquid extraction surface analysis101 can be coupled with UHR mass analyzers. Soft 
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ionization techniques allow the formation of ions with very little or no fragmentation and thus 

simplify the interpretation of mass spectra of highly complex mixtures.  

Despite high analytical throughput of direct infusion, this method is known to be prone to matrix 

artifacts such as changes in the ionization efficiency of an analyte due to the presence of ‘matrix’ 

compounds in the mixtures. For example, sulfates, nitrates and ammonium salts are important 

constituents of atmospheric aerosols357 and can cause ion suppression, adduct formation, and a 

rapid deterioration of instrument performance if injected into the ESI source.358 Thus, changes in 

peak intensities have to be interpreted with care when comparing mass spectra of samples with 

different salt content or widely varying organic composition. Another limitation of direct infusion 

is its inability to discriminate between isomeric compounds based solely on accurate mass. In 

addition, non-covalent adducts (including non-covalent dimers) formed in the ESI source can lead 

to peaks with high m/z values, which do not reflect compounds present in the actual sample. Such 

potential artifacts can be minimized by varying the ionization method, the ionization voltage, or 

the concentration of the sample. 

UHRMS data analysis 

Molecular formula assignment is the most critical and laborious step in HRMS analysis. Even 

with a mass accuracy of <1 ppm, several molecular formulas can often match a single measured 

mass. The number of theoretically possible assignments increases exponentially with the mass. 

For example, for masses of >600 Dalton (Da), more than 15 different molecular formulas can be 

assigned to each detected mass within a mass tolerance of 1 ppm.359 Therefore, to reduce the 

number of matching formulae, those not likely to occur in nature are eliminated by applying a 

number of constraints when determining elemental formulae from the accurate mass 

measurements. Although various data filtering approaches are applied there are number of 
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essential steps which include (i) instrument error and mass drift check, (ii) restriction for the 

number of possible elements assumed to be present in the molecule (e.g., C, H, O, N, and S), (iii) 

incorporation of isotopic pattern into analysis, (iv) consideration of only chemically meaningful 

elemental ratios, e.g., reasonable oxygen to carbon (O/C) and hydrogen to carbon (H/C) ratios, and 

(v) nitrogen rule and double bond equivalent checks and additional sample specific constrains.359,4  

Visualization methods 

Because HRMS generates very large amounts of data, their discussion and interpretation is often 

facilitated by visualization methods which aim to group or categorize data sets and help to identify 

patterns, such as differences between sampling locations or atmospheric processes in atmospheric 

chemistry. These visualization methods include the double bond equivalent, van Krevelen 

diagrams, Kendrick mass analysis and carbon oxidation state, and are described below. 

Double bond equivalent (DBE) 

The DBE, often referred as the index of hydrogen deficiency, is the number of double bonds and 

rings in a molecule. For formulae of the general type CcHhNnOo, the DBE can be calculated using 

Eq. 4: 

ܧܤܦ ൌ 1 ൅ ܿ െ 0.5݄ ൅ 0.5݊  (Eq. 4) 

where c, h and n correspond to the number of C, H and N atoms in the molecule. Other 

monovalent elements besides hydrogen (e.g., F, Cl, Br, I) can be counted as ‘hydrogens’, trivalent 

elements (e.g., P) are counted as ‘nitrogen’ and tetravalent elements (e.g., Si, Ge) can be calculated 

as ‘carbon’.92 However, when using Eq. 4, the DBE of molecules containing elements with 

multiple valences (e.g., S) should be considered with caution. The DBE is useful not only for 

molecular assignments by eliminating molecules with unreasonable high numbers of rings and 

double bonds but also for comparison of the molecular composition of different environmental 
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samples. The data can be visualized e.g., by plotting the DBE either against the number of carbon 

atoms in the individual formula or m/z ratio.360,361,362 For example, aromatic hydrocarbons and 

their oxidized derivatives that are generally characteristic for anthropogenic emissions have 

relatively large DBE values (>5) and thus can be easily identified in the large dataset. Therefore, 

DBE plots provide additional insights into the sources and precursors of aerosols.361,362   

van Krevelen (VK) diagrams 

The VK diagram, in which the H/C ratio is plotted as a function of the O/C ratio for each mass 

and corresponding formula identified in a sample, is often used to describe the evolution of organic 

mixtures. The method was initially developed to study the coalification process363 and is applied 

to categorize aerosol samples. VK diagrams can also be used to differentiate potential sources of 

the organic aerosols by identifying major known classes of natural and anthropogenic organic 

compounds as illustrated in Figure 7 (see Ref. 351 and references therein). In general, the most 

oxidized species populate the lower right part of the VK plot and the most reduced/saturated 

species lie on the upper left part of the diagram. Moreover, aliphatic compounds typically have 

high H/C ratios (≥1.5) and low O/C ratios (≤0.5), while aromatic hydrocarbons have low H/C 

ratios (≤1.0) and O/C ratios (≤0.5).352 VK diagrams are frequently plotted as three-dimensional 

figures with ion signal intensities included as an additional dimension.353 Ion signal intensities 

have been used to identify concentration ratios, but because in direct infusion ion intensities do 

not directly reflect the concentration of the analyte but rather its ability to ionize in the media, the 

interpretation of this information should be done with caution. A drawback of VK diagrams is that 

formulae with different atom numbers but identical atomic ratios (H/C, O/C, …) cannot be 

distinguished. Thus, the complexity of samples is sometimes not well represented by VK diagrams.  

Kendrick mass (KM) analysis 
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KM analysis is typically used for both formula assignment and data visualization.351 It is another 

useful tool to observe the composition and evolution of complex organic mixtures and is frequently 

used to identify compound classes.364 In addition, it can be applied to identify homologous series 

of compounds differing only by the number of a specific base unit (e.g., a CH2 group). The 

Kendrick mass of the CH2 unit is calculated by re-normalizing the exact IUPAC mass (14.01565) 

of CH2 to 14.00000. The KM defect is calculated from the difference between the nominal mass 

of the molecule and the exact KM.365 A consequence of this re-normalization of the atomic mass 

scale is that compounds that differ only by the number of base units (e.g., CH2) have exactly the 

same KM defect and can thus easily be identified and grouped into a homologous series. Therefore, 

the molecular elucidation of one compound in a homologous series allows identification of the 

remaining peaks in the series. KM analyses have been used to illustrate composition differences 

in biomass burning particles from various wood sources and to identify potential specific marker 

compounds.366 However, if compounds are identified only via KM defect analysis as members of 

a homologous series their structural similarity cannot be inferred. The elucidation of chemical 

structures needs to be supported by additional analytical techniques, e.g., tandem mass 

spectrometry, LC/MS or NMR, discussed in the previous sections. 

Carbon oxidation state (OSC) 

O/C ratios may not accurately describe the degree of oxidation of organics because other non-

oxidative processes (e.g., hydration and dehydration) can affect atomic ratios in a molecule as 

well.367 The OSC is suggested as an alternative metric to describe the chemical composition of 

atmospheric aerosols. OSC is shown to be strongly linked to aerosol volatility and thus is a useful 

parameter to classify SOA.368 The carbon oxidation state can be calculated from the following 

equation: 
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௜  (Eq. 5) 

where OSi is the oxidation state associated with element i, ni/nC is the molar ratio of element i to 

carbon.367 Generally OSC is used for molecules that do not have a multiple valence, e.g., containing 

C, H and O atoms only. OSC were combined for a large number of ESI-HRMS and AMS ambient 

data from various sampling locations,367 leading to a relationship between different aerosol classes 

and OSC. For instance, semi-volatile (SV) and low-volatility (LV) OOA produced by multistep 

oxidation reactions have OSC values between –1 and +1 with 13 or less carbon atoms (nC). OOA 

and HULIS lie between the large, reduced species (nC ≥5, OSC, –1) and the oxidative endpoint 

CO2. Biomass burning organic aerosol (BBOA) corresponding to primary particulate matter have 

OSC between –1.5 and 0 with 7 to 21 carbon atom. HOA has lower OSC <–1.5 and higher nC >19 

atoms compared to BBOA. 

Thus, HRMS offers new possibilities to characterize the complexity of atmospheric organic 

samples due to its ability to assign molecular formulas to the majority of the peaks measured in 

the sample. However, to achieve levels of unambiguous identification (i.e., I–factor of 1-2) a 

coupling to a chromatographic technique, such LC for instance, is needed. 

g) Tandem mass spectrometry  

Tandem mass spectrometry (MS/MS or MSn) is widely applied to obtain structural and sequence 

information about organic molecules. A tutorial review of these techniques is given by Ref.369 The 

technique is used to produce structural information about a compound by fragmenting its 

molecular ion inside the mass spectrometer and identifying the resulting product ions. This 

information can then be assembled to reconstruct the structure of the initial molecule. Tandem 

mass spectrometry also enables the detection of specific compounds in complex mixtures on 

account of their specific and characteristic fragmentation patterns. Four different types of tandem 
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MS experiments are possible depending on the instrumentation available, i.e., product ion 

scanning, precursor ion scanning, constant neutral loss scanning, and selected/multiple reaction 

monitoring. Of these, product ion scanning offers the highest level of molecular identification, 

especially if used in combination with a chromatographic technique such as LC and if an authentic 

standard is available. In the latter case, unambiguous identification of an organic compound can 

be achieved (I = 1). 

Product ion scanning is particularly useful for providing structural information on small organic 

molecules (MW <300) such as terpenoic acids formed upon photooxidation or ozonolysis of 

terpenes. The structural information includes characteristic product ions as well as neutral losses, 

providing not only information about functional groups but also on other structural features such 

as locations of functional groups. An overview of specific product ions and neutral losses that are 

useful for characterization of SOA products, and selected references, are provided in Table 6. As 

most SOA products are acidic (i.e., containing one or more carboxyl groups, a nitrate, a sulfate, a 

phenol, or a catechol group), Table 6 mainly contains data for product ions formed by 

fragmentation of deprotonated molecules. Product ion spectra have also proven to be useful to 

derive structural information on the monomeric units of high-MW covalent dimers and 

oligomers.370, 371, 335, 372, 373, 40, 374, 375 Figure 8 illustrates how ion trap MSn (n = 2, 3 and 4) data 

have been used to elucidate the structure of a prominent high-MW 358 dimer as a pinyl diaterpenyl 

ester, which is formed upon ozonolysis of α- and β-pinene and is also detected in ambient fine 

aerosol from forested environments.40, 376, 377, 378, 362  
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Table 6. Characteristic product ions and neutral losses observed upon fragmentation of protonated or deprotonated molecules useful for 
molecular characterization of SOA products. Acronyms: see list of abbreviations. 

Precursor 
ion 

Neutral loss 
(Da) 

Product ion 
(m/z) 

Structural feature References 

[M + H]+ 

 

H2O (18)  carboxyl, epoxy, keto, aldehyde, 
hydroxyl, and lactone groups 

,39,338b 

H2O + CO (46)   carboxyl group 39
 

[M – H]– 

 

 

 

 

 

 

 

 

 

 

 

CH3
• (15)  aromatic methoxy group 379

 

H2O (18)  hydroxyl, epoxy, keto, aldehyde, 
and carboxyl groups 

338b, 205, 380 

H2CO (30)  hydroxymethyl group 338d, 380  

NO (30)  aromatic nitro group 379
 

CH3
• + OH• (32)  1,2-methyl and hydroxyl groups 39, 380  

C2H2O (42)  acetyl group 380
 

CO2 (44)   carboxyl and lactone groups  338b, 39, 205 

C2H4O (44)  1-hydroxyethyl group 381
 

HNO2 (47) 

 

 

NO2
– (46) 

aliphatic nitrate group 

aromatic nitrate group 

336d 

382  

C2H2O2 (58)  carboxymethyl group 380
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CH3COOH (60)  acetate group 39 

CO2 + H2O (62)  two carboxyl groups 338b, 39 

HNO3 (63)  aliphatic nitrate group 335, 338d, 336d 

CH3
• + ONO2

• 
(77) 

 1,2-methyl and nitrate groups 335, 338d 

SO3 (80) 

 

HSO4
– (97) 

HSO3
– (81) 

sulfate group 343, 338d, 336d, 381 

 O2N–OSO3
–

(142) 
1,2-sulfate and nitrate groups 338d, 336d 
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Furthermore, accurate mass data can be obtained not only for precursor ions but also for their 

product ions with high-resolution FTICR, Orbitrap, and Q-TOF instrumentation.373,374,383,338d,384,235 

Precursor ion and neutral loss scanning have also been employed occasionally for screening 

complex atmospheric aerosol samples. Precursor ion scanning has been applied to monitoring 

groups of compounds which fragment to common product ions, e.g., nitro-aromatic compounds 

resulting in m/z 46 (NO2
–).382,385 Constant neutral loss scanning has been used to monitor 

carboxylic acids in positive ion APCI after conversion to methyl esters, which result in loss of 

methanol (32 Da),386 and nitro-aromatic compounds in negative ion APCI, which result in loss of 

NO (30 Da).382 

Selected/multiple reaction monitoring is particularly useful to confirm unambiguously both the 

presence and identity of compounds in atmospheric samples, e.g., the detection of carboxylic 

acids208 and of nitro-aromatic marker compounds that are specific to biomass burning.387 This 

scanning mode is not only highly specific but also highly sensitive. Unlike for the other tandem 

MS experiments the targeted analyte must be known and have been well characterized previously 

before this type of experiment is performed. 

Thus, tandem MS techniques used in combination with LC are very advanced analytical tools 

for both the detection and the detailed mass spectrometric characterization of organic compounds 

in complex atmospheric samples. 

5. Current challenges involving atmospheric organic compounds 

This last Chapter presents specific topics in atmospheric chemistry where organic compounds 

are essential and important questions remain to be elucidated. The objective is both to provide 

examples of applications of the techniques presented above to the identification of organic 

compounds in different contexts and to identify some possible future applications or developments.  
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5.1. Secondary organic aerosols  

This chapter focuses on secondary organic aerosols (SOAs), which are expected to have a large 

contribution to ambient aerosols, air quality and pollution, climate and the biogeochemical cycles. 

Section 5.1.1 presents the main definitions and challenges linked to this subject. Section 5.1.2 

presents the main approach to determine atmospheric SOA mass from condensable precursors 

(source apportionment) and summarizes the other processes expected to contribute to SOA 

formation and aging (condensed-phase reactions). Section 5.1.3 focuses on the molecular markers 

for biogenic SOA. Finally, Section 5.1.4 provides some future directions on the molecular 

characterization of SOA. 

5.1.1. Terminology and background 

The terminology associated with atmospheric organic aerosol is not coherent and often leads to 

confusion, inconsistency, and misunderstanding.388 SOA is defined as liquid or solid particles 

created in the atmosphere by the transformations of organic gases.389 These transformations can 

include gas-phase oxidation followed by condensation on pre-existing atmospheric particles and/or 

condensed-phase reactions in or at the surface of pre-existing particles (aerosols or cloud 

droplets).389b By contrast, primary organic material or primary organic aerosol (POA) is 

condensed-phase organic material emitted directly from the ground. Because these definitions are 

based on processes rather than on properties of the organic compounds, they make it challenging 

to identify primary and secondary organic compounds directly in atmospheric aerosols. For this 

reason, most of the current knowledge on SOA, including their formation mechanisms, markers, 

or contributing multiphase reactions, is based on laboratory or smog chamber experiments and 

introduce many unknowns and uncertainties when extrapolated to the atmosphere. In addition, 

because the above definition of SOA potentially includes various formation processes, it can lead 
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to many different practical descriptions of atmospheric SOA and of their corresponding mass, 

markers, and properties. Therefore, the main challenges concerning atmospheric SOA today relate 

to its identification and quantification, and are illustrated by the large discrepancies between 

modeled and measured atmospheric SOA mass, which have been debated for nearly a decade. 

More recent studies have also started to tackle other challenges, such as the characterization of 

other SOA properties: overall composition (O/C and H/C ratios …), optical properties, and cloud-

forming properties.   

The first practical description of SOA was entirely based on the smog chamber investigations of 

the gas-phase oxidation of various precursors in the presence of inorganic seeds, and led in the 

mid-90’s390 to the first SOA formation model: the gas-to-particle partitioning theory.391 This 

theory, which is still today the most widely-used in atmospheric models, is based on the 

thermodynamic equilibrium of condensable organic compounds between the gas and the 

particulate phase. Initially, only limited classes of gas precursors were identified by the 

experiments, terpenes and aromatic compounds. Their oxidation products, to which those of 

isoprene were later added, thus provided the first markers for SOA and the first method to quantify 

them in the atmosphere by source apportionment studies (see next section).   

The development and applications of the Aerodyne AMS (Section 4.1.2.c) in the 2000’s led to 

other practical descriptions of SOA and different markers, which were also validated by smog 

chamber experiments. SOA were assimilated to the low- and semi-volatile oxygenated organic 

fractions LV-OOA and SV-OOA, respectively, corresponding to different stages of aging.140 Their 

markers are the fragmentation patterns obtained with the same instrument for smog chamber SOA. 

Statistical tools such as PMF, CMB or their combination thus allowed to quantify atmospheric 

SOA with this instrument with high time resolution.144  
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However, while atmospheric models estimated SOA to represent a large, sometimes dominant, 

fraction of the atmospheric organic particles mass,385,393,394,392 it became evident in the 2000’s that 

they still underestimated this mass by several orders of magnitude.393 A new SOA formation model 

was proposed to account for this missing mass: the volatility basis set (VBS).394 It consists in 

widening the range of precursors taken into account in the gas-to-particle partitioning to all semi-

volatile compounds. This introduced thus a somewhat different practical description of SOA, 

represented by semi-volatile markers. The adequacy of this model was demonstrated with the SOA 

produced by the Deepwater Horizon spill, which was mostly accounted for by the contribution of 

semi-volatile compounds.395  

Implementing the VBS in atmospheric models succeeded in reducing some of the discrepancies 

between predicted SOA masses and observations, but was not sufficient in some cases, for instance 

for above Europe with the EMEP model.396 A number of directions are currently being explored 

to account for these remaining differences. Recent works, using the gas-phase oxidation of -

pinene as an example, indicated the important contribution of extremely low-volatility oxidation 

products (ELVOCs) to SOA mass, currently not taken into account in models.397 In addition, over 

the last decade, several classes of condensed-phase reactions were identified as likely to contribute 

to SOA mass and properties (see next section). But they are still under investigation and their 

applications to atmospheric models limited, so far.  

Organic identification has been key in all these developments and in most of the progress 

accomplished in the understanding of SOA over the past three decades. It will continue to be key 

in elucidating the remaining unknowns of this topic.  

5.1.2. Source apportionment and condensed-phase processes 
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As explained above, the main criterion used so far to evaluate our understanding of atmospheric 

SOA has been the comparison between their modeled and measured masses. Only recently other 

criteria started to be considered, such as their average elemental composition (ratios O/C, 

H/C…),140,398 now accessible with HRMS instruments such as the AMS or LC/HRMS. This 

section presents the main approach to estimate the atmospheric SOA mass resulting from 

condensable precursors, source apportionment, and summarizes the other processes currently 

expected to contribute to SOA mass and properties.  

Source apportionment for condensable precursors. SOA precursors include VOCs emitted 

by biogenic (terrestrial and marine ecosystems) and anthropogenic sources (biomass burning, 

fossil fuel combustion). Globally, the biogenic precursors dominate, isoprene being expected to 

the main one.399 Other biogenic and anthropogenic hydrocarbons such as oxygenated biogenic 

compounds (1,3-butadiene, and 2-methyl-3-butene-2-ol),5,400 sesquiterpenes, and aromatics, also 

contribute, but to a smaller extent. At local or regional scale, however, these precursors can have 

a significant contribution to SOA mass. Another potential source of SOA is the oxidation of 

evaporated POA vapors.394b The non-volatile POA from diesel exhaust and biomass burning is 

known to include low-volatility compounds that partition between the gas and aerosol phase. These 

compounds can then undergo gas-phase oxidation to form species of different volatilities that form 

SOA.394b,401 

The identification of SOA markers in smog chamber experiments made possible the 

investigation of the contribution of specific precursors to atmospheric SOA.400a,400b,402 However 

while unique chemical markers are available for primary sources such as motor vehicle exhaust, 

wood combustion, coal combustion, meat cooking, tobacco smoke,389b the construction of unique 

chemical profiles for SOA requires complex source apportionment models. Recently, several such 
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SOA source apportionment studies have been conducted to assess the impact of SOA in global, 

regional and local air quality, including a SOA molecular marker method403 and the use of SOA 

molecular markers in CMB and other receptor models,404 and for studying SOA gas-to-particle 

partitioning compounds,405 OA aging/gas-to-particle partitioning of semi-volatile VOCs in source 

apportionment models (CMB and PMF),406 and reactions contributing to ambient OA.377  

Source apportionment in time-resolution of minutes can be achieved with the AMS technique 

while classical filter collection techniques provide the same information with a frequency of about 

a day. Using the AMS, SOA is quantified with statistical tools such as PMF, CMB or their 

combination.144,140 These approaches require a prior classification of SOA precursor types from 

individual sources, as illustrated with 17 compounds for the determination of atmospheric SOA 

from isoprene, monoterpenes, β-caryophyllene, and aromatics.407 However, since the 

quantification of these individual sources rely on laboratory studies and may vary considerably 

with the experimental conditions, this approach is to be applied to ambient SOA with caution. The 

combination of AMS and 14C analysis enables a more reliable source apportionment for fossil vs. 

non-fossil precursors for OOA, as the 14C analysis is quantitative and independent of emission 

factors or potential chemical transformations in the SOA. This approach was illustrated by the 

apportionment of a major fraction of non-fossil sources to total OOA in Zurich, and to LV-OOA 

and a smaller fraction to SV-OOA, respectively, in Los Angeles.198c,408  

Condensed-phase reactions contributing to SOA  

Since the beginning of the 2000’s evidence has accumulated that condensed-phase reactions 

contribute to SOA formation and aging. Some was obtained from atmospheric observations and 

other from laboratory studies. The first type of evidence is the identification in ambient aerosols 

of compounds clearly resulting from condensed-phase reactions. Some of the first and most 
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important examples were the 2-methyltetrols,5 which were found in a wide range of atmospheric 

aerosols and identified as products of isoprene. However, their hydroxyl functional groups clearly 

indicated another origin than gas-phase oxidation alone, as the latter produces essentially carbonyl 

or acid groups. These compounds were proposed to result from the liquid-phase hydrolysis344b,409 

of the gas-phase epoxydiols114 produced in the low-NOx (NOx = NO + NO2) atmospheric oxidation 

of isoprene. The reactive uptake of these epoxydiols on acidic sulfate aerosols was also 

demonstrated to contribute to SOA mass.344b,409a,410 Another important class of compounds found 

in ambient aerosols and clearly resulting from condensed-phase reactions are organosulfates. As 

explained in Section 4.2.3, their ubiquity and abundance in atmospheric aerosols411 was mostly 

revealed by LC/MS techniques.343,336c Their organic structures indicated that they resulted from 

biogenic precursors, which had undergone secondary reactions in sulfate-containing aerosols. 

Laboratory and smog chamber investigations have shown that these compounds were produced by 

the gas-phase oxidation of isoprene and terpenes followed by the reaction of the epoxy-containing 

products with sulfuric acid in acidic sulfate aerosols,31,204,336d,338c,342b,344 thus providing a plausible 

formation pathway in the atmosphere. Radical mechanisms, in particular involving the sulfate 

radical, were also shown to produce the same compounds but at neutral pH.412 The exact 

mechanism accounting for the large concentrations of organosulfates in ambient aerosols still 

remains to be determined.411  

Other type of atmospheric observations indicating the contribution of condensed-phase reactions 

to SOA consist in mass or chemical budgets. An example was the unexpectedly low gas-phase 

concentration of glyoxal in the MCMA-2003 campaign in Mexico City, matching an unaccounted 

SOA mass, and thus indicating the formation of SOA by condensed-phase reactions of this 
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precursor.413 The role of glyoxal as SOA precursor has been, since then, largely confirmed by 

laboratory and smog chamber28,414 and is still under investigation (see below). 

Substantial evidence that condensed-phase reactions contribute to SOA has also been obtained 

from laboratory and smog chamber investigations. Towards the end of the 1990’s, the ionic 

reactions of organic compounds in atmospheric aerosols, thus in the dark but in the presence of 

catalysts, started to be explored.415 The importance of acid catalysis for C-C bond-forming 

reactions such as aldol condensation,415-416 and C-O-C bond-forming reactions such as acetal and 

oligomer formation417 was studied first. These reactions received ample attention as they were 

shown for the first time to have large contributions to SOA mass.418 This contribution was found 

to be due to the very large apparent Henry’s law constant of the precursors in acidic media, itself 

resulting from their equilibrium with their many dissolved forms (protonated, enols..).416b,416d 

However, such large Henry’s law constants, and significant reaction rates were only achieved for 

very large acid concentrations (> 50 % wt H2SO4 ~  7 M of H+). Thus, while efficient to produce 

SOA in smog chamber, these acid-catalyzed processes were concluded to be irrealistic in 

tropospheric aerosols. This prompted the investigation of other catalysts enabling the same 

reactions, at neutral pH and other typical tropospheric conditions. Iminium catalysis met these 

criteria, and was first illustrated with amino acids,419 then established for the first time with 

inorganic ammonium ions, NH4
+,419a,420 one of the most abundant components of tropospheric 

aerosols. However, unlike with acid catalysis, the uptake of many precursors on neutral 

ammonium-containing seeds does not contribute significantly to SOA mass.414a Notable 

exceptions are, however, glyoxal, and to a lesser extent methylglyoxal, for which the formation of 

SOA on neutral ammonium seeds in the dark28,414,421 and the uptake on amino-acid-containing 

solutions422 have been demonstrated. Another interesting aspect of the reactions of carbonyl 
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compounds with NH4
+/NH3 is that, in addition to the catalytic channels, they involve non-catalytic 

condensation channels producing C-N compounds, which strongly absorb light in the UV-Vis 

region. Thus, the formation of imidazoles absorbing up to 300 nm in the SOA produced by glyoxal 

and ammonium sulfate seeds72a,414b,423 or in amino-acid or amine-containing media424 was 

reported. More recently, the condensation of a keto-aldehyde from limonene in ammonium salt 

solutions was shown to produce compounds absorbing near 500 nm.80,424d,425 Such condensation 

reactions in ammonium salts are important for the formation of brown carbon and the optical 

properties of SOA, and are also discussed in Chapter 5.3.  

Other condensed-phase reactions than ionic ones have also been reported from SOA smog 

chamber experiments, such as those producing oligomers, which were identified using matrix-

assisted laser desorption ionization and ESI mass spectrometry.426 These reactions seem to have 

radical mechanisms, similar to those taking place in more diluted, aqueous media. Note that it is 

important to distinguish between “aqueous-phase” conditions,427 in which the solute are in small 

concentrations (< 0.1 M) from condensed-phase or aerosol-phase conditions where inorganic salts 

and other compounds are at much larger concentrations (>> 1 M) and water molecules are minor. 

Finally, the role of light-induced condensed-phase reactions to SOA has also been evidenced. In 

particular, glyoxal was shown to produce much more SOA mass in the light than in the dark.28 

These light-induced processes have been recently proposed to result from photosensitized 

reactions, where some imidazoles produced by glyoxal were found to act as efficient 

photosensitizers.428  

All these condensed-phase reactions are still under investigation but the contribution of some of 

them to SOA in the atmosphere has started to be evaluated by atmospheric models. This is, in 

particular, the case for the reactions of glyoxal,398 which were found to have a significant impact 
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on the average O/C ratio of the SOA.398 The evaluation of the role of these reactions in atmospheric 

SOA would now require to identify some of their markers in atmospheric aerosols, such as the 

imidazoles from glyoxal or more complex condensation products with ammonium salts. 

5.1.3. Molecular markers for biogenic SOA 

This section focuses especially on molecular markers for biogenic SOA because biogenic VOCs 

are the dominant precursors for SOA429 and the molecular markers for anthropogenic SOA are 

rather well known,389b except for biomass burning SOA markers, which have more recently been 

characterized (Chapter 5.2).  

The identification and quantification of specific molecular markers originating from SOA due 

to different precursors are essential towards accurate assessment of their impacts in source 

apportionment studies. In addition, molecular speciation provides fundamental insights into SOA 

source processes, i.e., the chemical reactions leading to their formation. Furthermore, molecular 

markers can serve as a "clock" for measuring the OA aging state. Molecular speciation activities 

started in the late 90’s for monoterpene SOA,187,218,246,338a,370,430 but started much later for isoprene 

SOA, i.e., after 2004 following the discovery of the 2-methyltetrols.5 During the past two decades 

substantial progress has been made with the structural elucidation (high identification level I ≤2) 

of biogenic SOA markers. In this section an update will be given for markers related to isoprene 

and α-pinene, and information for markers related to other selected BVOCs (i.e., β-pinene, d-

limonene, Δ3-carene, and β-caryophyllene) will be briefly presented.  

Isoprene SOA markers. A compilation of isoprene SOA markers and selected references about 

their structural characterization are given in Table 7.  

Table 7. Overview of isoprene SOA markers reported in the period 2004-2009 and since 2009, 

and selected references on their structural characterization. Abbreviation: sulfate ester, SE. 
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OH

OH
OH

OH

OH

OHOH

O

OH

OHHO3SO

O

Chemical structure and name (MW) Selected references 

Markers reported in the period 2004-2009 [for a more 
complete compilation, see Hallquist et al. 389b] 

 

2-methyltetrols (MW 136) 
(2-methyl-1,2,3-tetrahydroxybutane) 
 
 
 
 
 
2-methylthreitol (2R,3R)          2-methylerythritol (2S,3R) 
+ 2S,3R isomer                         +2R,3S isomer 
 
2-methyltetrol derivatives 

2-methyltetrol organosulfates (MW 216) 
2-methyltetrol nitrooxy organosulfates (MW 261) 
2-methyltetrol dinitroxy organosulfates (MW 306) 

 
5 Claeys et al. (2004) 
431 Wang et al. (2004) 
335 Surratt et al. (2006) 
 
 
 
 
 
 
 
204 Surratt et al. (2007) 
338d Gomez-Gonzalez et al. 
(2008) 
336d Surratt et al. (2008) 

2-methylglyceric acid (MW 120) 
(2,3-dihydroxy-2-methylpropanoic acid) 
   

 
 
 

 
    2-methylglyceric acid SE (MW 200) 
 
 
 
 
 

 
30 Claeys et al. (2004) 
335 Surratt et al. (2006) 
432 Szmigielski et al. (2007) 

 
 
 
338d Gomez-Gonzalez et al. 
(2008) 

C5-alkene triols (MW 118)

 
         

229 Wang et al. (2005) 
335 Surratt et al. (2006) 

 

Novel markers reported since 2009  

polar organosulfates related to methacrolein or methyl vinyl ketone 
      hydroxyaceton SE                       glycolic acid SE  

              (MW 154)                                    (MW 156) 
 

 
74a Olson et al. (2011) 
412d Schindelka et al. 
(2013) 

OH
OH

OH

OH

OHOH

OH
OH

OH

OH

OH
OH

OH
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       1-hydroxybutane-3-one               3,4-dihydroxybutan-2-one        
          SE (MW 168)                                     SE (MW 184) 
 

381 Shalamzari et al. 
(2013) 
 

 

In recent years improved mechanistic insights have been obtained about the formation of 

isoprene markers under different experimental (smog chamber) conditions. As explained 

previously, the 2-methyltetrols, their corresponding sulfate esters and the C5-alkene triols are 

generated from the condensed-phase reactions of the C5-epoxydiols produced in the gas-phase 

photooxidation of isoprene under low-NOx conditions.410 By contrast, 2-methylglyceric acid and 

its corresponding sulfate ester have been shown to require high-NOx conditions and methacrylic 

acid epoxide, formed by decomposition of methacryloylperoxynitrate, as a gas-phase 

intermediate.433 Insights have also been gained about the formation of the 2-methyltetrols and 

corresponding sulfate esters under high-NOx conditions, where the oxidation of isoprene with OH 

radicals partly results in the formation of organonitrates, which subsequently partition to the 

particle phase and can undergo a nucleophilic substitution with water or sulfate.74b,434 Isoprene 

SOA-related organosulfates that recently have been structurally elucidated and detected in ambient 

fine aerosol include sulfate esters of 3,4-dihydroxybutan-2-one, glycolic acid, 1-hydroxy-3-

oxobutane, and hydroxyacetone.74a,381,412d,414b,435 As explained in the previous section, their 

formation, as well as the sulfate ester of 2-methylglyceric acid, has been explained by multiphase 

reactions involving either sulfuric acid or the sulfate radical anion.74a,412d,414b,435 

HO3SO
OH

O

HO3SO

O

OH

O

OSO3H

HO3SO

O
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The isoprene SOA markers, the 2-methyltetrols, the C5-alkene triols and 2-methylglyceric acid 

have mainly been analyzed with GC/MS with prior trimethylsilylation,5,229,431 whereas LC/MS 

methods based on (‒)ESI have been applied to the analysis of isoprene SOA-related 

organosulfates.204,336d,338d,381,412d,435 Due to their high polarity C18 reversed-phase HPLC columns 

with polar retention have been employed, such as di- and trifunctionally-bonded phases, which do 

not suffer from stationary phase collapse when a mobile phase is used with a high water content 

(> 95%). In addition, ion-pairing reversed-phase LC/MS using dibutylammonium acetate as ion 

pairing reagent has been applied to polar isoprene-related organosulfates.436 Quantification of 

isoprene SOA markers (i.e., 2-methyltetrols, C5-alkene triols, and 2-methylglyceric acid) has 

mainly been performed using GC/MS with prior trimethylsilylation.437 However, the developed 

methods have not been fully validated, mainly due to the lack of sufficiently pure authentic 

standards (>95%) for the 2-methyltetrols and 2-methylglyceric acid, and the complete lack of 

authentic standards for the C5-alkene triols. With respect to the quantification of polar isoprene-

related organosulfates such as 2-methyltetrol and 2-methylglyceric acid sulfate esters, methods 

based on LC/(‒)ESI-MS have been employed.437b,438 But these methods have not been validated 

either and suffer from shortcomings such as the lack of authentic reference standards so that 

surrogate compounds need to be utilized. 

An isoprene SOA marker which occupies a special position is methyl furan, first detected using 

the AMS technique and GCxGC/MS in a field campaign in the Borneo tropical forest.148 Methyl 

furan is not in itself present in the particles but is thought to be produced through the decomposition 

of isoprene epoxydiol-related SOA species such as 3-methyltetrahydrofuran-3,4-diols during the 

thermal desorption used in both techniques.439 It is a particularly useful marker because it produces 
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O
O

OH

OH

a distinctive signal in the AMS mass spectrum at m/z 82, allowing source apportionment (Section 

4.1.2).   

α-pinene SOA markers. A compilation of α-pinene SOA markers with selected references 

describing their structural characterization is given in Table 8.  

Table 8. Overview of α-pinene SOA markers reported before and since 2007, and selected 
references on their structural characterization. Only markers that are detected at substantial 
concentrations (>10 pg m‒3) in ambient fine aerosol have been included. Abbreviation: sulfate 
ester, SE. 

Chemical structure and name (MW) Selected references 

Markers reported before 2007  

cis-pinonic acid (MW 184)         cis-pinic acid (MW 186) 

 

 

10-hydroxy-cis-pinonic acid    

(MW 200)  

 

370 Hoffmann et al. (1998) 
218 Christoffersen et al. (1998) 
246 Yu et al. (1999) 
338b Glasius et al. (1999) 
338a Larsen et al. (2001) 
 
 

Markers reported since 2007  

3-hydroxyglutaric acid (MW 148) 
34 Claeys et al. (2007) 

 

3-methyl-1,2,3-butanetricarboxylic acid, MBTCA (MW 204) 
36 Szmigielski et al. (2007) 

 

lactone-containing terpenoic acids and related marker 

    terpenylic acid (MW 172)           terebic acid (MW 158) 

440 Claeys et al. (2009) 

205 Yasmeen et al. (2011) 
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diaterpenylic acid acetate                2-hydroxyterpenylic acid  

              (MW 232)                                             (MW 188)  

 
 

441 Kahnt et al. (2014) 

organosulfates and nitrooxy organosulfates 

3-hydroxyglutaric acid SE (MW 228) 

hydroxypinonic acid SE (MW 280) 

2,3-dihydroxypinane nitrooxy organosulfates (MW 295) 

 

                                                      

 

                                                    + 2 positional isomers 

 

31 Surratt et al. (2007) 

336d Surratt et al. (2008) 

high-MW dimers 

pinyl-hydroxypinonyl ester (MW 368) 

 
pinyl-diaterpenyl ester (MW 358) 

372 Müller et al. (2008) 

40Yasmeen et al. (2010) 
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Despite the fact that molecular speciation already started in the late 90’s significant progress has 

only been made in the last decade with a more complete molecular speciation of α-pinene SOA 

and insights into their formation processes. A marker that has received particular attention is 3-

methyl-1,2,3-butanetricarboxylic acid,36 which is now established as a suitable marker for aged α-

pinene SOA.442 For an account on the discovery of MBTCA, see Ref.443 Other novel markers that 

have structurally been characterized include 3-hydroxyglutaric acid,34 the lactone-containing 

terpenoic acids, terpenylic acid, terebic acid, 2-hydroxyterpenylic acid, 4-hydroxyterpenylic acid, 

and diaterpenylic acid acetate.440-441 Furthermore, high-MW dimers have received ample attention 

and have been structurally identified and detected in ambient fine aerosol with the two most 

prominent ones being diesters with MW 368 and 358.40,362,370,372,376-378 The MW 368 dimer was 

shown to consist of a pinyl and a hydroxypinonyl monomeric unit,372 while the MW 358 dimer 

was found to comprise a pinyl and a diaterpenyl residue.40,376 They were demonstrated to be formed 

through ozonolysis in the gas phase and not, as previously postulated, by acid-catalyzed 

esterification of monomeric terpenoic acids in the particle phase,40 and were speculated to involve 

the participation of Criegee intermediates.378 The exact formation mechanism of high-MW dimers 

warrants further investigation as they are implied in new particle formation.370,378 

Organosulfates related to α-pinene detected in ambient fine aerosol include sulfate esters of 2- 

and 3-hydroxyglutaric acid, hydroxypinonic acid, and isomeric MW 295 nitrooxy organosulfates 

with a pinane diol skeleton.336d Monitoring of the latter nitrooxy organosulfates in field studies 

revealed that they are nighttime products,342b,438 pointing to NO3 radical chemistry. Furthermore, 

they have also been detected at substantial concentrations in wintertime ambient fine aerosol that 

is impacted by biomass burning.444  
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The α-pinene markers discussed above have been analyzed with LC/MS, mainly with ESI or 

APCI in the negative ion mode, using regular C8 342b or C18 338b,342b,445 and trifunctionally bonded 

C18 reversed-phase columns.40,205,440-441 Some markers such as terpenylic acid can be readily 

detected in the positive ion mode,440 while pinic acid, pinonic acid, hydroxypinonic acid and 

MBTCA can also be analyzed with GC/MS with prior trimethylsilylation.36,246 However, valuable 

markers such as the lactone-containing terpenoic acids escape GC/MS detection and may undergo 

degradation during the derivatization procedure.441 Therefore, LC/(‒)ESI-MS is the technique of 

choice as it allows to determine established markers such as pinic acid, pinonic acid and 

hydroxypinonic acid, the novel markers, MBTCA, diaterpenylic acid acetate and the lactone-

containing terpenoic acids, as well as α-pinene-related organosulfates. Quantification of terpenoic 

acids has been achieved using GC/MS with prior derivatization,201,446 and more recently with 

LC/MS based methods.47,338d,377,445 As for the quantification of isoprene SOA markers, also most 

methods have not been validated or only partially, again due to the lack of sufficiently pure 

reference standards or the complete lack of them. Despite these shortcomings, the methods have 

found to be adequate for determining diel variations and time trends of SOA markers in field 

monitoring studies. 

Other biogenic SOA markers. Table 9 provides a list of  markers which are related to biogenic 

SOA other than isoprene and α-pinene SOA and are due to minor monoterpenes (i.e., β-pinene, d-

limonene and Δ3-carene) and β-caryophyllene, a sesquiterpene,43,205,246,338a,400b,447 and have been 

detected in ambient fine aerosol at substantial concentrations (>10 pg m‒3).43,338d,445 With regard 

to β-pinene, it is worth noting that several markers for α-pinene SOA are also markers for β-pinene, 

i.e., pinic acid, pinonic acid, terpenylic acid and terebic acid, whereas homoterpenylic acid, a 

lactone-containing terpenoic acid, is a unique marker which has recently been reported.205 For the 
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analysis of the markers listed in Table 9, the same methodology as discussed above for α-pinene 

SOA markers can be applied. 

Table 9. Overview of SOA markers related to β-pinene, Δ3-carene, d-limonene and β-
caryophyllene, useful for molecular speciation of ambient fine aerosol, and selected references 
on their structural characterization. Abbreviation: sulfate ester, SE. 

Chemical structure and name (MW) Selected references 

Markers for β-pinene  

cis-pinonic acid (MW 184)         cis-pinic acid (MW 186) 

 

terpenylic acid (MW 172)              terebic acid (MW 158) 

 

10-hydroxy-cis-pinonic acid                    homoterpenylic acid 

          (MW 200)                                    (MW 186)

 

        

     1,2-dihydroxypinane SE  

      (MW 250)  

 

 

 

246 Yu et al. (1999) 
165 Glasius et al. (2000) 
338a Larsen et al. (2001) 
205 Yasmeen et al. (2011) 
342b Iinuma et al (2007)  O
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Markers for Δ3-carene  

cis-3-caronic acid (MW 184)            cis-3-caric acid (MW 186) 

 
10-hydroxy-cis-3-caronic acid (MW 200)     terebic acid (MW 158) 

                                                                       (see above) 

 

 

 

165 Glasius et al. (2000) 
338a Larsen et al. (2001) 
205 Yasmeen et al. (2011) 
 

Markers for d-limonene  

ketolimononic acid (MW 186)      limonic acid (MW 186) 

 
ketolimonic acid (MW 188)   3-carboxyheptanoic acid (MW 204) 

 
1,2-dihydroxy-4-acetylcyclohexane nitrooxy organosulfates  

    (MW 298)   

 

    

                                                     + positional isomer 

 

 

 

165 Glasius et al. (2000) 
338a Larsen et al. (2001) 
447 Jaoui et al. (2006) 
336d Surratt et al. (2008) 
205 Yasmeen et al. (2011) 
 

Markers for β-caryophyllene  
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β-caryophyllinic acid                β-nocaryophyllonic acid  

(MW 254)                                   (MW 254)      

 

 

 

 

 

β-caryophyllonic acid 

    (MW 252)                                      (MW 198) 

 

 

 

 

 

 

400b Jaoui et al. (2007) 

448Winterhalter et al. (2009) 

43 van Eijck et al. (2013) 

 

5.1.4. Future directions in the investigation of SOA 

As emphasized in this chapter, the identification, quantification and other characterization of 

atmospheric SOA involve many challenges. Many of the difficulties and controversies in 

characterizing atmospheric SOA result from their unspecific and process-based definition. It is 

thus time for the atmospheric community to propose (a) more specific definition(s), better adapted 

to the current understanding of these aerosols and to current instrumental capacities, for instance 

making a distinction between the SOA obtained from condensation and those obtained from 

surface- or condensed-phase reactions. Important progress has however been achieved over the 

past three decades, where organic identification has played a key role. The SOA originating from 

major (isoprene and α-pinene) and other BVOCs (e.g., β-pinene, Δ3-carene, d-limonene, and β-

caryophyllene) is now well characterized at the molecular level and suitable markers for source 

apportionment and field monitoring are available. But the SOA produced by oxygenated BVOCs, 

such as the C6 green leaf volatiles, emitted by wounded or insect-infested plants, is largely 
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unexplored in spite of the evidence that they are a source for SOA.338d,449 Methods for the 

quantitative determination of SOA markers using GC/MS with prior derivatization or LC/MS are 

still only partially validated and could benefit from interlaboratory comparisons. In addition, 

laboratories involved in molecular speciation would welcome the availability of mass spectral 

libraries so that SOA markers could more readily be identified, without requiring authentic 

standards. 

In addition, a new direction of research in this topic, which has developed over the last decade, 

is the investigation of the condensed-phase reactions contributing to SOA mass, composition, and 

properties. An important future direction of investigation in this topic appears to be the reactions 

in neutral ammonium seeds. Other important directions of research in the near future will be the 

characterization of important SOA properties such as their O/C and H/C ratios, optical properties 

(Chapter 5.3), and cloud-forming properties (Chapter 5.4). Organic identification will continue to 

be key in exploring all these questions. 

5.2. Biomass burning aerosols 

5.2.1. Background  

Biomass burning aerosols originate both from anthropogenic and natural combustion such as 

wild fires, agricultural fires, deforestation fires, and residential biomass combustion for cooking 

and heating. Carbonaceous aerosols from biomass burning are of scientific and public interest 

because of their occurrence in local, regional and global environments as well as their impact on 

human health, air quality, visibility, and climate. Globally, biomass burning is one of the major 

sources of primary organic aerosols, light-absorbing carbon (brown and black carbon, see Chapter 

5.3),450 and probably also of SOA.451 It has been shown to have adverse health effects such as 

respiratory diseases.452 In low- and middle-income countries the indoor combustion of solid fuels 
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(including biomass) is estimated to cause about 2 million deaths annually.452b Even in high-income 

countries biomass burning for residential heating has detrimental effects on human health,452a,453 

although further investigations are warranted to constrain its local and regional impact. Biomass 

burning aerosols can contribute to the climate budget directly, i.e., through its light-absorbing 

carbon component (Chapter 5.3), but also indirectly by affecting the formation or optical properties 

of clouds (Chapter 5.6).450a 

The main challenges concerning biomass burning are to determine its sources and impacts on 

regional and local air quality. This is achieved by “source apportionment” approaches, which are 

based on the identification and quantification of specific molecular markers, such as 

anhydromonosaccharides (levoglucosan, mannosan, and galactosan) formed by the pyrolysis of 

cellulose and hemicelluloses.454 But large uncertainties remain in these determinations, requiring 

more studies, in particular the identification of additional markers. The information about the 

impact of biomass burring on ambient air quality is especially important for a regulatory body to 

decide if biomass burning should be regulated or controlled. The characterization of markers in 

such varied and complex mixtures of organic compounds, including non-polar hydrocarbons to 

very polar saccharidic compounds, is a showcase for the capability of analytical methods towards 

molecular identification. 

5.2.2. Molecular organic markers 

The chemical composition of the biomass and type of combustion sustained directly influence 

the physical and chemical properties of the resulting biomass burning aerosols. Different tree 

species develop markedly different woody constituents during growth, but all wood consists of 

various forms of lignin, cellulose and fillers.455 At temperature below 300 C reduction of MW, 

evolution of water, CO2 and CO is observed. While at temperatures between 300 – 500 C the 
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biopolymers rapidly undergo bond cleavage yielding monomeric compounds, at higher 

temperatures, wood molecules dehydrate, disproportionate and decarboxylate giving rise to low-

MW products.456 In the following section, we separate biomass burning marker compounds into 

non-polar, polar and SOA compounds based on suitable analytical techniques for each compound 

group. As biomass burning aerosols contain a large number of organic compounds with a wide 

range of properties, it is important to choose a suitable analytical method for the accurate 

quantification of the marker compounds. 

a) Non-polar marker compounds 

Non-polar marker compounds in biomass burning smoke have been almost exclusively analyzed 

using GC/MS based methods. These marker compounds are a wide array of low-MW organic 

compounds, which originate from extractives in biomass and constitute 4-10% dry mass of normal 

temperate wood species.455 The extractives contain fats and waxes, terpenoids, resins, essential 

oils, mono- and disaccharides, and monomeric phenolic compounds.457 They serve as metabolic 

intermediates, defense chemicals against predators, or energy reserves. During wood combustion, 

the extractives and their thermal degradation products are released by volatilization and steam 

distillation. Some of the organic constituents in the extractives are unique to certain wood types 

and can be used as marker compounds for source identification of atmospheric aerosols.458 

A group of non-polar compounds present at elevated concentrations in wood-smoke emissions 

(but not specific to wood combustion) are n-alkanes, n-alkenes, n-alkanols and n-alkanoic acids 

that originate from epicuticular waxes and lipids. n-Alkanes emitted from biomass burning show 

a distinctive odd to even carbon predominance (carbon preference index >1), especially for higher 

carbon number homologues with a Cmax value between C25 and C31.
458b,459 On the other hand, n-

alkenes, n-alkanols and n-alkanoic acids show predominantly even carbon preferences (carbon 
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preference index <1).459b-459d,460 n-Alkanoic acids react with ammonia in biomass combustion 

processes, forming alkyl amides and alkyl nitriles461 though little is known about the formation 

mechanisms and concentrations of the latter derivatives in wood smoke. While biomass burning 

markers originating from plant waxes and their alteration products are not source specific, they are 

typically found in particles smaller than 1 µm459b whereas biologically emitted plant waxes are 

found mostly in particles larger than 1 µm.462 Hence, the difference in their size distribution can 

be used as a fingerprint for the influence of wood smoke in ambient aerosols. n-Alkanes, n-alkenes, 

alkyl amides and alkyl nitriles can be analyzed with GC/MS without prior derivatization steps. n-

Alkanols and n-alkanoic acids are typically analyzed using GC/MS based methods with a prior 

derivatization step, either the alkylation of carboxylic OH groups or the trimethylsilylation of all 

hydroxyl groups.458b 

Although polycyclic aromatic hydrocarbons are not unique marker compounds for wood 

combustion, their occurrence in wood smoke has been known for a long time463 and their 

identification and quantification in wood smoke has been considered important because of their 

potential impact on public health. Various analytical techniques have been applied to determine 

PAHs in ambient aerosol samples in the past though GC/MS based methods have been most widely 

used due to their good chromatographic separation and detector sensitivity. Their application to 

the analysis of PAHs in atmospheric samples has been reviewed very recently.464 Among PAHs 

detected in wood smoke, retene is considered to be a unique marker compound for coniferous 

wood combustion. This compound is suggested to form from thermal degradation of resins, most 

likely diterpenoids such as abietic acid in the conifer resins.465  

Sample preparation procedures for the analysis of non-polar biomass burning makers with 

GC/MS typically involve organic solvent extraction, clean up and pre-concentration steps prior to 
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analysis. Alternatively, thermally assisted desorption systems such as a Curie-point 

pyrolyzer459b,466 and a variation of self-made or commercially available thermal desorbers258-259,467 

may be used to inject collected aerosol samples directly into GC/MS systems. In comparison to a 

number of studies reporting their emission factors from combustion sources and concentrations in 

atmospheric samples, little is reported about artifact formation during sample work-up procedures. 

Owing to the extremely complex nature of biomass burning samples, the determination of recovery 

values for all the compounds detected may be unrealistic. Nevertheless, reliable quantification of 

these marker compounds may still be possible when isotope-labeled authentic standard compounds 

are used as internal standards.  

b) Polar marker compounds 

There are several methods available to analyze polar marker compounds in biomass burning 

smoke. Traditionally, GC/MS with a prior derivatization step has been used for the characterization 

of polar marker compounds. Liquid-based separation techniques coupled to mass spectrometry 

have become more popular tools in recent years due to their simpler sample preparation procedures 

for the analysis of polar compounds. 

Among polar marker compounds, the pyrolysis products of cellulose and hemicelluloses are the 

most important class of compounds in biomass burning smoke. Cellulose is a macromolecule 

consisting of several to ten thousand linearly linked D-glucopyranose units, whereas 

hemicelluloses are smaller macromolecules that contain different monosaccharidic (e.g., mannose 

and galactose residues) but mainly D-glucopyranose units. Cellulose and hemicelluloses provide 

a supporting mesh for wood structures and account for 30-40% of woody tissue.456 The major 

pyrolysis products of cellulose and hemicelluloses are anhydromonosaccharides, namely 

levoglucosan (1,6-anhydro-β-D-glucopyranose), galactosan (1,6-anhydro-β-D-galactopyranose) 
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and mannosan (1,6-anhydro-β-D-mannopyranose), and they are widely used as biomass burning 

marker compounds because they are specific and emitted in considerable amounts.454  

Another class of polar biomass burning marker compounds is the pyrolysis products of lignin. 

Lignin is an amorphous biopolymer synthetized by monolignols and accounts for 25-35% of the 

dry mass of softwood and 18-25% of hardwoods. Its function is to provide strength and rigidity to 

plant structures.456,468 Its pyrolysis produces mostly substituted phenols and substituted 

methoxyphenols with predominantly p-coumaryl alcohol derivatives from grass combustion, p-

coniferyl alcohol derivatives from softwood combustion and sinapyl alcohol derivatives from 

hardwood combustion. This difference may be used as an indicator for the influence of soft- or 

hardwood combustion in ambient aerosols.469 

Among the extractives, resins and their thermal degradation products such as abietic acid, 

dehydroabietic acid and oxo-dehydroabietic acids are often present in wood smoke influenced 

ambient aerosols.458b,458c These compounds are specific to the combustion of temperate coniferous 

trees, and can be considered as marker compounds for their combustion. 

Owing to the presence of polar functional groups in their structures, resin-related markers are 

best analyzed with GC/MS methods with prior derivatization such as 

trimethylsilylation.230,258,454c,458a,460,470 Alternatively, substituted phenols, substituted 

methoxyphenols and abietic acid derivatives can be analyzed underivatized with liquid-based 

separation techniques coupled to mass spectrometry such as CE/MS459b and LC/MS.444,471 In 

addition, anhydromonosaccharides can be analyzed with HPAEC coupled to a pulsed 

amperometric detector (PAD),286,472 HPAEC coupled to a mass spectrometric detector,291,298 

microchip CE coupled to a PAD473 and HPLC/ESI-MS.474 The liquid-based separation techniques 

have advantages over traditional GC/MS analysis with a prior derivatization step in that their 
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sample preparation procedure is simpler and they enable the direct analysis of aqueous samples 

such as fog or cloud samples.475  

Extraction and derivatization steps for GC/MS methods have been extensively characterized and 

optimized for anhydromonosaccharides230,470d,476 and methoxyphenols.477 For example,  the 

evaporative loss of methoxyphenols during Teflon filter extraction with a mixture of methylene 

chloride/acetone under ultrasonication was found to be a significant problem,477 and they an 

extraction with ethyl acetate in a sealed headspace vial was chosen, which yielded a median 

recovery value of 97% for deuterium-labeled recovery standard compounds. For 

anhydromonosaccharides, the extraction recovery of levoglucosan was optimized using a 

dichloromethane/methanol mixture (80:20, v/v), yielding 90.0 ± 2.4 – 97.0 ± 4.0%.446 A 99% 

recovery of anhydromonosaccharides was reported after two consecutive extraction steps from 

spiked quartz fiber filters with tetrahydrofuran as an extraction solvent for an HPLC/MS 

method.474a A recovery of 95 ± 3% was reported for levoglucosan from spiked quartz fiber filters 

by two consecutive water extraction steps with short vortex agitation and gentle shaking.478 A 

nearly complete extraction of monoanhydrosaccharides from quartz fiber filters was also reported 

with water by ultrasonic agitation,286,472e and by short vortex agitation and gentle shaking.298  

c) Biomass burning SOA marker compounds 

Until recently, little was known about the formation of SOA in biomass burning and its marker 

compounds. The formation of SOA in biomass burning smoke was suggested from the aqueous 

phase-reactions of lignin products such as phenol, guaiacol and syringol in laboratory 

experiments.479 In these studies, HPLC-UV was used to follow the decay of the precursor 

compounds and the product formation was assessed by HR-AMS. Similarly, the photochemical 

oxidation of wood smoke and changes in its chemical characters was investigated in a smog 
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chamber.451,480 In these studies, changes in AMS mass fragments were used to identify the 

oxidation of primary aerosols and the formation of biomass burning SOA. Another chamber study 

investigated the formation of SOA from the gas-phase photooxidation of biomass burning marker 

compounds such as phenols and methoxy-phenols.481 In this study, the gas-phase oxidation 

products were detected using CI-MS with H3O+ as a reagent in the positive mode and CF3O− as a 

reagent in the negative mode, whereas UPLC/ESI-MS was used for the analysis of SOA 

compounds. Based on the results from these experiments, the authors cautioned that the use of 

guaiacol (softwood combustion maker) and syringol (hardwood combustion marker) may not be a 

suitable marker for atmospheric aerosol as syringol can efficiently form guaiacol and other 

hydroxylated aromatic compounds during the photooxidation. 

Series of smog chamber experiments indicate that the oxidation in the presence of NOx of m-

cresol, which is largely emitted from wood combustion,482 forms methyl-nitrocatechols.483 In 

atmospheric aerosols nitro-aromatic compounds have been reported to correlate very well with 

levoglucosan in wintertime and thus suggested to be suitable molecular markers for biomass 

burning SOA.444,483 They were also found in the HULIS fraction of biomass burning-influenced 

aerosols from Hungary and Brazil.333 In all these studies the identification of the nitro-aromatic 

compounds was achieved by comparing the LC retention times and MS fragmentation patterns of 

the compounds present in the atmospheric samples, those present in laboratory-generated aerosols, 

and authentic standards. Very recently, the HPLC/ESI-MS/MS analysis of a series of nitro-

aromatic compounds in ambient aerosols was improved379,387 by separating isobaric isomers, 

notably of methyl-nitrocatechols and nitro-guaiacol, by substituting acetonitrile with 

tetrahydrofuran in the LC eluent. The latter method also uses ethylenediaminetetraacetic acid to 
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resolve the peak shape distortions of some of nitro-aromatic compounds forming transition metal 

complexes. 

5.2.3 Future directions in the investigation of biomass burning aerosols 

Over the past two decades significant progress has been made in the identification and 

quantification of organic markers of biomass burning aerosols. But despite the large body of data 

obtained little effort has been done to compare or standardize the different analytical procedures. 

In particular, as the determination of the concentrations of anhydromonosaccharides in ambient 

aerosols is becoming a routine analysis, reliable analytical procedures are urgently desirable. In 

order to address this need an interlaboratory comparison for the determination of levoglucosan, 

mannosan and galactosan in ambient filter samples has recently been organized (Chapter 3.3).37 

Another area of uncertainties is the further oxidation of particle-bound biomass burning markers 

and their products in the atmosphere, which limits the accuracy in the contribution of biomass 

burning determined in source apportionment studies. Atmospheric stability has been only 

investigated for levoglucosan, the most abundant biomass burning marker.454b But the results of 

solar radiation experiments, and acid hydrolysis experiments470a,484 showing the stability of this 

compound have been recently contradicted by aqueous-phase485 and gas-phase486 oxidation 

experiments with OH radicals concluding in a half-life of 3 to 4 days in wintertime deliquescence 

particles485 and of 0.7 to 2.2 days in the gas phase in summertime.486 Further studies of the 

oxidation of other biomass burning markers and their products are therefore warranted to improve 

the source apportionment of biomass burning.  

In general, further laboratory, field and remote-sensing studies are needed to constrain the 

emission factors, and spatial and temporal distributions of biomass burning marker compounds, 

SOA formation, and relevant physico-chemical properties to obtain better estimates of the global 
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and regional biomass burning emissions and of its contributions to air quality, public health, and 

climate. 

5.3. Optically-active compounds 

This chapter focuses on another important class of organic compounds in the atmosphere: those 

displaying specific properties upon interaction with solar light. Solar radiation is the main source 

of energy in the Earth’s atmosphere and atmospheric components can interact with it in two ways: 

by absorbing or scattering it. This can give them different roles: a contribution to the Earth’s 

radiative budget (either a warming or a cooling one), or a role as photochemical precursor in 

atmospheric chemistry. In particular, obtaining an accurate radiative budget depends on the ability 

to fully inventory all the absorbing or scattering components present in the atmosphere. Identifying 

the organic compounds or classes of compounds taking part in these processes is therefore 

important. This chapter summarizes the current knowledge of these compounds, their roles in the 

atmosphere, and discusses potential future areas of investigations. 

5.3.1. Organic compounds contributing to the direct radiative forcing  

Both organic gases and particulate matter present in the atmosphere absorb and scatter light. 

Scattering by atmospheric gases (Rayleigh scattering) is generally not taken into account in 

atmospheric chemistry or the climate budget because it reflects light in all directions and does not 

affect the radiative balance. Thus only organic gases absorbing light are discussed below. 

Atmospheric particles can either absorb solar energy and contribute to warm climate, or scatter it 

back to space (Mie scattering) and contribute to cool it. Until recently organic aerosols were 

assumed to be mostly scattering (see discussion below), therefore this sub-chapter will focus on 

the more recent evidences for their light-absorbing properties (brown carbon). 

a) Greenhouse gases 
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As explained in Section 4.1.1, all organic compounds absorb light in the IR region (wavelength, 

 >800 nm), where the energy is transferred into rotational and vibrational molecular motions and 

ultimately heat. Most of them also absorb in the near UV and Visible region ( <800 nm) and 

transform some of the energy into heat, either directly or by recycling photochemical energy. Thus, 

all their absorbing properties can potentially contribute to warm the radiative budget. However, 

only the gases absorbing at different wavelengths than important atmospheric constituents, in 

particular water vapor, effectively have a warming contribution and are called greenhouse gases 

(GHG). Organic GHGs include methane (CH4), chlorofluorocarbons (CFCs), hydrofluorocarbons 

(HFCs), and hydrochlorofluorocarbons (HCFCs).487 Their presence and abundance in the 

atmosphere is mostly inferred from chromatographic analyses (GC-FID or GC/MS) such as 

described in Chapter 4.2.2. In spite of the large number of atmospheric CFCs and HCFCs already 

known several new ones have recently been identified by GC/MS.488 Thus, it cannot be excluded 

that more remain to be identified.  

The contributions of the organic GHGs other than CH4 to the global radiative budget are however 

modest.487b All together, they represent less than 0.5 W m‒2, while CH4
 alone contributes for the 

same amount and CO2 for about 1.8 W m‒2. The individual contributions represent only a few % 

of the total GHG forcing (in W m‒2): CFC-11, 0.06; CFC-12, 0.17; HCFC-22, 0.04; others, < 0.03. 

The contribution of yet unknown organic GHGs is thus likely to be small, especially because the 

probability that their IR spectrum does not to overlap with those of previously known GHGs is 

getting smaller with each new compound. Thus the identification of new organic GHGs should not 

significantly improve the global radiative budget. Note, however, that beside GHGs, nearly all 

organic gases contribute to the global radiative forcing by producing O3, another important GHG, 

as a side-product of their oxidation in the presence of NOx. But since these processes are not 
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directly related to their optical properties they are not discussed here. Some studies have estimated 

the radiative contribution of all organic gases at regional or local scale, but mostly in the UV-Vis 

region: nitrated aromatic gases were thus estimated to about 1 W m‒2 in the UV range in the Los 

Angeles basin, and total organic gases (29 compounds including carbonyls, organonitrates, 

peroxides, and phenols) to about twice as much.489 Identifying and inventorying the light-

absorbing organic gases in some regions can thus be important when estimating the visibility and 

radiative balance. 

b) Brown carbon 

For decades “black carbon”, also termed “elemental carbon” or “light-absorbing carbon”, was 

the only carbonaceous material thought to absorb in this spectral region. The assumption that 

organic material does not absorb light is still largely made today, especially in climate models (see 

discussion below). However, evidence of the contrary has been accumulating for decades, 

facilitated by the clear contrast between the strong wavelength dependence of the spectrum of 

organic compounds and the nearly-constant spectrum of black carbon.490 A strongly wavelength-

dependent spectrum, revealing the presence of absorbing organic material, was reported for 

organically-extracted fractions of ambient aerosols as early as the 80’s.491 This material was 

compared to humic substances and given the name of “brown carbon”. Organic fractions with 

similar wavelength-dependent spectra were subsequently identified from coal burning,492 biomass 

burning,493 and urban/road-side aerosols.494 This evidence, obtained by chemical analyses, was 

confirmed by very different approaches such as ground-based measurements of aerosol light-

attenuation,495 irradiance,496 or sun photometer measurements, in particular with the AERONET 

network.497 The latter evidenced not only similar wavelength dependences in the absorbance of 

ambient aerosols but clearly demonstrated that brown carbon affects their overall optical 
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properties. Brown carbon seems therefore to be an important component to take into account when 

estimating the optical and radiative properties of aerosols. Taking into account brown carbon in 

the overall aerosol absorbance has also been underlined as essential in order to correctly attribute 

the contributions of black and elemental carbon, the errors made otherwise being estimated to a 

factor 2 to 7.490 An emerging challenge in the determination of global or regional radiative budgets 

is therefore the identification of all the types and sources of brown carbon. So far, the following 

types have been reported: 

- Combustion and biomass burning brown carbon: the reader is referred to Chapter 5.2 for 

details on the organic composition of biomass burning aerosols. Generally, their “optically-active” 

components have been identified as polyaromatic material such as PAHs and oxygenated PAHs,490 

and nitro-aromatic compounds.276   

- HULIS. Some atmospheric aerosols have been found to contain light-absorbing 

macromolecular fractions having properties similar to those of humic substances, and therefore 

termed humic-like substances.333,354,491,498 However, the definition of atmospheric HULIS being 

based on their extraction procedure,491,498a,498b it is difficult to attribute them to a single compound 

or source. HULIS are often linked to biomass burning aerosols491 but have also been found in a 

wide range of atmospheric aerosols, including rural and remote ones.333,498a,498b Their smaller 

molecular mass (<400 Da) than terrestrial humic substances questions their similarities with the 

latter, and their sources have been suggested to be secondary rather than primary.498d The analyses 

of HULIS report a complex chemical composition, which has remained an identification challenge 

for years. Increasingly sophisticated techniques, including electrospray ionization in combination 

with tandem and high-resolution mass spectrometry333,354,498c,498e have been used to investigate 

their molecular structures and sources. They identified aromatic compounds, polysaccharides, and 
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aliphatic compounds with polar groups such as hydroxyl, carboxy, carbonyl, nitrate and sulfate 

among the components. More recent studies333 confirmed the small MW range of atmospheric 

HULIS (<300 Da) and identified nitro-catechols as the main chromophores in urban and tropical 

biomass burning HULIS, while organic tri-acids and terpenic acids dominated rural ones. These 

results confirm the multiplicity of types and sources of atmospheric HULIS, and the challenge 

involved in determining their contributions to brown carbon. 

- biogenic primary organic matter and POA: Although the presence of biological material 

(plant debris, cellular debris, pollen, bacteria, etc) in the atmosphere is known for a long time,499 

it has mostly been discussed as an aerosol type (Primary Biological Atmospheric Particle, or 

PBAP) and much less at the molecular level. The biological molecules identified so far in aerosols 

include amino acids, proteins, sugars, polysaccharides, and fatty acids, which do not absorb in the 

UV-Vis region. However some PBAPs have been shown to absorb sunlight and most of them are 

considered to be fluorescent (see below). The molecules responsible for the absorption have not 

been identified but could be related to strong biological UV-Vis absorbers such as chlorophylls, 

carotenoids, and tannins. But the molecular structure and impact on the aerosol properties of this 

“biological brown carbon” remain largely to be investigated.  

- Secondary organic material. As discussed in the previous chapter, a number of condensed-

phase reactions in SOA produce light-absorbing compounds, such as aldol condensation producing 

C=C conjugated compounds414b,416c,416g,419,420b,420c,500 and the condensation of dicarbonyl (glyoxal, 

methylglyoxal) or larger carbonyl compounds with NH4
+/NH3

72a,80,414b,423,424d,425 or with trace 

compounds such as amino acids and amines,424  all producing conjugated C-N compounds such as 

imidazoles. While all these products display a main absorption band below 350 nm, a condensation 

product of limonene keto-aldehyde with NH4
+/NH3 was recently reported to have a maximum 
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absorbance near 500 nm, thus fully in the visible range.80,424d,425 The molecular identification of 

such highly conjugated compounds is a challenge because they have intense absorption coefficient, 

but are produced in trace concentrations in complex product mixtures. Nonetheless, structures 

were proposed for this and other compounds obtained under similar conditions from other SOA 

precursors, based on extraction and ESI-HR-MS analyses.501 A main challenge in this field of 

research is now to identify such secondary brown carbon in ambient aerosols using similar types 

of analyses, identify and quantify their formation mechanisms, and accurately determine their 

impacts on the optical and radiative properties of organic aerosols. 

The contribution of brown carbon to the global radiative budget is currently not well taken into 

account in climate models. All of the 14 climate models taken into account in the latest IPCC 

report included primary organic carbon, and the implementation of SOA in about half of them (8 

out of 14) was underlined as an important improvement compared to previous IPCC reports.502 

However, this effort was exclusively made on the modeling of the SOA microphysics (formation 

rates, mass loadings, size distribution), while their absorption indices, along with those of POA, 

were still based on non peer-reviewed and pre-2000’s estimates503 or sub-module calculations504 

assuming a negligible absorption index for organic matter at all wavelengths. One exception is the 

HITRAN database,505 which includes more realistic optical properties for brown carbon. However, 

the proxy chosen for SOA are laboratory reactions with amines,424c which are less representative 

of  aerosol brown carbon than the products obtained with NH4
+/NH3, but can be easily updated 

with the references cited in this review. Therefore, adding SOA to the climate models in the 2013 

IPCC exercise while still neglecting their absorbance merely introduced an additional scattering 

component in the radiative budget and resulted in a seemingly larger cooling contribution of 

aerosols than in previous reports.  
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A number of observations, however, support a significant warming contribution of brown carbon 

to the global aerosol forcing, such as the multi-wavelength ground-based measurements of aerosol 

radiation showing a brown carbon contribution of 28% of the total light absorption at 440 nm in 

California.497a applying the same method at global scale estimated the global contribution of brown 

carbon between 0.1 and 0.25 Wm‒2 and changed the global contribution of aerosols from the 

current cooling one to a warming one (+ 0.025 W m‒2).497b These results underline the substantial 

errors made in current climate models by neglecting the absorbance of brown carbon, and the 

urgency to better characterize the optical properties of the different types of brown carbon. 

5.3.2. Light-absorbing compounds as photochemical precursors  

a) Gases 

The absorption of sunlight by organic compounds in the UV or Vis region triggers electronic 

transitions, and confers to organic compounds photochemical properties. These transitions often 

correspond to bond-altering processes such as photolysis or energy exchanges such as 

photosensitization or fluorescence, and often result in the formation of free radicals. Most of the 

organic gases absorbing in the UV-Vis region (thus at  290 nm) in the atmosphere photolyze 

and produce radicals. Table 10 summarizes the main types of gases having these properties: 

aldehydes, dicarbonyls, ketones, peroxides, organo-nitrates, and some aromatic compounds such 

as nitro-phenols. Their importance as radical precursors depends on the product of their absorption 

cross section by their quantum yield, which are compared for the ground-level cut-off wavelength 

of 290 nm in Table 10.506  

Table 10. UV-Vis absorbing organic gases in the atmosphere, with the position of their absorption 
band, absorption cross sections, , and photolysis quantum yield, , at 290 nm.  

Gas max (nm) (290 nm)  1020 molec cm–

2 
(290 nm) Ref 
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HCHO ~ 305  1.2 1.0 506a 

CH3CHO 290 4.9 0.5 506a 

CHOCHO 298 3.9 0.6 506a 

CH3(CO)CH3 274 4.9 0.4 506a 

CH3OOH < 210 0.7 1.0 506a 

CH3(CO)OH 205 < 0.1  506b 

CH3OH 184 < 0.01  506b 

CH3ONO2 190 0.9 1.0 506a 

CH3O2NO2 < 200 3.9 1.0 506a 

CH3(CO)ONO2 < 200 0.5 1.0 506a 

Nitro-phenols 320 - 360 ? ? 506d 

Naphtalene     

Anthracene 312 - 365    

 

The importance of organic gases as sources for radicals, such as OH and HO2 (HOx), or other 

important compounds for atmospheric chemistry such as NOx or HONO, depends not only on their 

spectroscopic properties (Table 10) but also on their atmospheric concentrations. Thus, while the 

photolysis of organic gases is estimated to be globally a minor source of HOx radicals in the 

atmosphere, formaldehyde (HCHO) is estimated to be the main organic contributor to HOx because 

of its abundance. In some regions, however, the contribution of photolyzable organic gases to the 

radical budget can be much more important. In a tropical rainforest, the photolysis of organic 

hydroperoxides (CH3OOH, ROOH) has a small but non negligible contribution to the HOx 

budget.507 At a rural and forested site the photolysis of HCHO and other organic compounds was 

estimated to contribute to 23% of the radical sources.508 And in an urban environment such as 

Mexico City the photolysis of HCHO alone was estimated to contribute to 69% of the direct HOx 
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sources, and dicarbonyl compounds (gloxal, methylglyoxal) and other aldehydes to an additional 

17% (Figure 9). The photolysis of other organic compounds also contributed indirectly to the HOx 

sources by producing organic radicals.509 In a previous campaign at the same location these 

contributions were estimated to be even larger, the HOx sources being almost entirely accounted 

for by the photolysis of HCHO (over 50%) and other oxygenated compounds (glyoxal, 

acetaldehyde, ketones…, about 45% in total).510 The importance of optically-active organic gases 

in atmospheric chemistry is therefore not questionable. The contribution of photolyzable organic 

gases to the radical sources in the atmosphere is currently thought to be well understood. However 

the current unknowns in the radical cycles today (Chapter 5.6) do not entirely preclude the 

existence of yet unknown organic gas-phase sources for radicals.  

b) Particulate matter 

As in the gas phase, some organic compounds present in or at the surface of aerosols or cloud 

droplets can photolyze when exposed to UV-Vis light. The depth at which shortwave radiations 

can penetrate atmospheric particles is however unclear and can limit direct photolysis in the bulk. 

Photosensitization can provide alternative radical sources to direct photolysis. A photosensitizer is 

a compound absorbing light, which, instead of photolyzing, transfers its excitation energy to 

another compound, thus triggering reaction chains that are propagated by charge or electron 

exchanges (radical reactions) and terminated by electron acceptors. Photosensitized processes of 

atmospheric relevance have been evidenced at the surface of aerosol proxies in laboratory, such as 

the photo-induced formation of HONO,511 uptake of ozone,512 or heterogeneous ozonolysis 

reactions.513 More recently similar processes were also evidenced in the aerosol bulk, and shown 

to contribute to SOA growth via bulk radical reactions.428,514 In these studies the organic 

photosensitizers used were humic acids,511,514a benzophenone and benzoic acid-related 
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compounds,512-514 and imidazoles.428,514b While humic substances and their proxies, benzophenone 

and benzoic acid, might not be present in all aerosols, the fact that secondary products of simple 

precursors, such as imidazoles from glyoxal, can also act as a photosensitizer indicates that such 

processes could be more common in the atmosphere than previously thought, and might be a source 

for radicals both in the particulate and in the gas phase, which remains to be evaluated. 

c) Fluorescent organic compounds 

Beside the photolyzable organic compounds discussed above, highly conjugated compounds 

such as polyaromatic ones containing 2 to 4 rings are also present as gases in the atmosphere. But 

they do not photolyze515 in spite of their strong absorption in the near UV and Vis regions, thus do 

not contribute to the gas-phase radical sources. This is because their molecular structures allow for 

more complex transitions, such as fluorescence. When present in or at the surface of atmospheric 

particles such fluorescent properties can be accompanied with photosensitizing abilities,516 as 

described above, making of these compounds potential radical sources in the particulate phase.  

These compounds can be monitored with fluorescent detectors, which were developed about two 

decades ago to monitor airborne bacteria and biochemical warfare, but later widely used to 

investigate atmospheric aerosols for scientific purposes.517 It is well established, however, that not 

all biological material fluoresces, and that some non-biological material fluoresces and can 

interfere with these measurements. Examples of the latter are aromatic compounds and PAHs, 

which are responsible for the fluorescent properties of cigarette smoke. HULIS are also known to 

fluoresce498b although they are not necessarily biogenic. More recently, laboratory studies have 

evidenced the fluorescent properties of reaction products of organic compounds with NH3/NH4
+.518 

The identification of biological compounds by fluorescence is thus interesting but subject to a 
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number of limitations and artifacts. On the other hand, fluorescence can be used to identify the 

conjugated compounds, some of them having interesting photochemical properties. 

5.3.3. Perspectives on optically-active organic compounds 

As discussed in this chapter, the role of atmospheric organic gases in the radiative budget is 

fairly well established, as well as their role as sources for radicals or other important species, 

although the current unknowns in the oxidizing cycles of the atmosphere do not exclude some 

unexpected contributions of optically-active organic compounds. But, by far and large, most of the 

current challenges and uncertainties on the optically-active organic compounds in the atmosphere 

concern the condensed material: the nature and contribution of brown carbon to the radiative 

budget, and the nature, abundance, and role of photochemical precursors (or photosensitizers) in 

atmospheric particles. The non-negligible contribution of brown carbon to the optical and radiative 

properties of ambient aerosols is now supported by a very large number of direct observations. It 

is thus urgent to finally include realistic absorption indices for brown carbon in climate models, 

potentially making the global forcing of aerosols positive (warming) instead of negative (cooling). 

The potential importance of photosensitized processes in or at the surface of particles in the 

atmosphere just begins to be revealed by laboratory studies, but already justifies further 

investigations. In both cases, future investigations will have to determine the types of compounds 

or structures taking part in these processes in the atmosphere and their sources, thus identify their 

markers in ambient aerosols. Although these compounds are only interesting for their optical 

properties, the identification of their specific sources will require the molecular identification of 

specific markers with advanced analytical techniques such as LC/MS, in combination with soft 

ionization and HRMS. This effort is well underway for HULIS and biomass burning material, but 

remains almost entirely to be done for light-absorbing components of SOA and POA, and for 
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potential photosensitizers present in aerosols. Thus, as with most of the topics involving organic 

compounds, molecular identification will be key in improving the knowledge of these compounds 

and of their role in the atmosphere. 

5.4. Cloud-forming organic material 

Clouds are important components of the atmosphere, not only for their role in the hydrological 

cycle but also because they are among the main cooling factors in the climate budget.519 The 

contribution of organic compounds to cloud formation is still largely unclear but this chapter 

summarizes some of the current knowledge on the topic. The formation of liquid and ice clouds in 

the atmosphere takes place exclusively by condensation of water on aerosol particles called cloud 

condensation nuclei (CCN) or ice nuclei (IN),520 respectively. In both cases, the large uncertainties 

in the climate budget are due to remaining gaps in the understanding of the microphysical 

processes controlling the condensation, in particular their selectivities towards specific 

atmospheric particles.519 The formation of ice particles is even less understood than the one of 

liquid cloud droplets, but certain types of organic materials are known to be good IN, in particular 

biological material such as bacteria, spores, fungi, viruses, algae, and pollen.521 However, the 

efficiency of this material as IN does not seem to be linked to its molecular properties but rather 

to its shape or geometry.  

Nearly all the current knowledge on the formation of liquid cloud droplets from aerosol particles 

results from two types of instruments, built by the scientific community to study these processes: 

hygroscopicity tandem differential mobility analyzers (HTDMAs) and cloud condensation nuclei 

counters (CCNCs). These instrument sample the aerosol particles, exposing them to a controlled 

relative humidity over a certain residence time in a continuous flow chamber, and measuring either 

their growth due to water condensation in the chamber (with HTDMAs) or the number of activated 
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particles (with CCNCs).520 The role of various aerosol components, in particular organic ones, on 

cloud droplet formation has been studied with these instruments in laboratory. Their measured 

efficiency is called “hygroscopicity”,520 which is thus essentially an instrumental definition. While 

some organic compounds were found to be somewhat “hygroscopic”, such as organic acids and 

HULIS, to a few exceptions,522 these instruments have not reported any effect of aerosol 

composition in the formation of cloud droplets in the atmosphere.523 

There is however a significant gap between these instrumental observations and the theory 

describing the formation of cloud droplets from aerosol particles, the Köhler theory. In particular, 

the Köhler equation involves two parameters that can be affected by properties of organic 

compounds: the Raoult’s term, linking the concentration of solute and the water vapor pressure 

around the particle, and the surface tension of the particle. Consequently, the “hygroscopicity” 

measured by HTDMAs is a combination of both factors and thus not an intrinsic parameters of the 

processes. Furthermore, unlike the instrumental observations, the Köhler equation implies that 

cloud droplet formation should be favored by organic compounds increasing the Raoult’s term, 

thus dissociating in water, such as organic acids, and/or by those decreasing the surface tension of 

the particles, also called surfactants.  

For this reason, the presence of organic surfactants in atmospheric particles was investigated 

already several decades ago.524 But, because of the considerable analytical challenge they 

involved, these efforts resulted in a limited knowledge until recently. Some organic aerosol or fog 

fractions were however evidenced to affect the surface tension524-525 but the compounds involved 

were not identified at the molecular level. Recently, the development of a more sophisticated 

extraction method targeting surface-active compounds allowed to isolate the total surfactant 

fraction of atmospheric aerosols and to characterize it.526 This technique was used to evidence the 
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presence of much stronger surfactants than expected in ambient aerosols, and likely to have some 

impact on cloud formation. Dynamic investigations of aerosol surfactants also indicated their slow 

equilibration, exceeding the typical residence times of HTDMAs and CCNCs, and explaining the 

absence of surfactant effect observed with these instruments.526c The role of organic surfactants on 

cloud droplet formation is supported by a growing number of observations, such as the observation 

of surfactant effects on droplet formation for ambient aerosols measured with an HTDMA 

operating over longer timescales,522 and in laboratory-generated aerosols.527 The understanding of 

these processes and a definitive confirmation for the role of surfactants will require further studies, 

including the development of other instruments than HTDMAs and CCNCs, and various, 

complementary approaches. But only the molecular identification of aerosol surfactants, with 

advanced techniques such as LC/ESI-MS, will provide important information on the type of 

functions responsible for the surface-tension depletion, and the origin of these surfactants. In 

particular, the Critical Micelle Concentrations (CMC) estimated so far for aerosol surfactants 

suggest their microbial origin. This would need to be further investigated by comparing the 

molecular structures of these compounds with those of microbially-produced surfactant standards. 

Thus, even in this topic where microphysics and the physical chemical properties of compounds 

are important, molecular identification can provide unique, key information. 

5.5. Nucleating compounds 

5.5.1. Introduction 

Nucleation is the process in which new solid or liquid particles form directly from gas phase 

species. It has been observed in nearly all regions and environments on Earth, from urban to remote 

locations, to the notable exception of mixed forests with high isoprene emissions such as the 

Amazonian rain forest528 and clean Michigan forests. 
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In spite of these numerous atmospheric observations and a large number of laboratory 

investigations many unknowns remain in these processes. While sulfuric acid seems to be an 

essential component,529 its atmospheric boundary layer concentration is generally too low to 

account for a simple binary nucleation with water vapor alone.530 Other gases such as ammonia 

and organic compounds are thus suspected to be involved and enable nucleation under atmospheric 

conditions.531  

To discuss the role of organic species in new particle formation in the atmosphere it is useful to 

differentiate between the very early steps of new particle formation (cluster or embryo formation, 

formation of a critical nucleus) and the growth of the critical nucleus to larger sizes (>2-3 nm).532 

Today it is clear that organic species are heavily involved in the 2nd step (the growth process) but 

their importance in the formation of the critical nucleus is less clear. Although the contributions 

of physico-chemical and chemical processes cannot be clearly distinguished, the growth phase is 

generally described as being purely driven by the physico-chemical properties of the condensing 

compounds (i.e., their vapor pressure), while chemistry (chemical functionality) is more important 

for the formation of the cluster or embryo itself. But the role of organic compounds in particle 

nucleation and growth remains to be fully elucidated. 

5.5.2 Investigation of potential candidate molecules: Formation of the critical nucleus 

As mentioned above, chemical interactions are suspected to play an important role in the 

formation of the critical nucleus. These chemical interactions that draw the molecules from the gas 

to the condensed phase may span from ionic or covalent bond formation to mere electrostatic 

interactions.533 

In the past few years the role of acid-base chemistry and salt formation in these processes has 

been the focus of investigations. In particular, organic amines emitted by soils and oceans have 
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been observed to enhance the nucleation of sulfuric acid by a base-stabilization mechanism 

involving acid-amine pairs.534 A synergistic effect of amines and ammonia was also shown on the 

enhancement of sulfuric acid nucleation,535 but the chemical mechanisms behind it remain unclear. 

Theoretical studies have indicated that similar strong interactions exist between dicarboxylic acids 

and amines in hydrated clusters, suggesting that they can participate in atmospheric aerosol 

nucleation by forming aminium carboxylate ion pairs.536 This has been confirmed by the 

observation of aminium salts in nanometer atmospheric particles with  thermal desorption-CI-

MS.537 

Laboratory studies514 showed that glyoxal can contribute to the early particle growth of ultrafine 

sulfuric acid particles by non-oxidative processes such as oligomerization. In line with this, a 

nucleation process involving one molecule of sulfuric acid and one molecule of organic compound 

was suggested,531a which was recently supported by the observations of clusters of sulfuric acid 

and oxidation products of pinanediol in laboratory.538 Laboratory measurements using atmospheric 

pressure inlet TOF-MS or CI-API-TOF-MS have also shown that highly oxidized organics play a 

central role in the early steps of cluster formation397,538-539 but these techniques only provide the 

MW and empirical chemical formula of the observed compounds, but not their chemical 

functionality or structure.  

5.5.3 Investigation of potential candidate molecules: Low-vapor pressure compounds 

One of the most important properties of organic compounds for new particle formation, both for 

the formation of the critical nucleus and for the growth of the particle, is their saturation vapor 

pressure. In a complex atmospheric particle the latter is influenced not only by the saturation vapor 

pressure of the pure compound, but also by the bulk composition of the particle and the particle 

curvature (Kelvin effect). Obviously the Kelvin effect is more important for the early steps of 
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particle formation (diameter < few nm). But the observed growth rates of small atmospheric 

particles could be matched by a box model by assuming that about half of the gas-phase oxidation 

products were non-volatile.540 These calculations were refined 541 and showed that the equilibrium 

vapor pressures of the condensing organics must be as low as 10–8 to 10–7 Pa to account for the 

growth of sub-50-nm particles in continental forest environments.541-542  

Since classical chemical oxidation mechanisms do not produce compounds with such low 

volatilities, their formation pathways are open to speculation. A first possible source for these 

extremely low volatile VOCs is the second-generation oxidation of semi-volatile VOCs by OH in 

the gas.543 Molecular markers for second-generation products from biogenic VOC oxidation (e.g., 

MBTCA) have been observed in the field389b,544 and in laboratory studies.543b,545 But molecular 

information on 2nd or 3rd generation oxidation products of anthropogenic VOCs is lacking,546 partly 

due to the lack of suitable markers retaining the original anthropogenic VOC skeleton.  

Other potential low-vapor pressure candidates are higher-MW dimeric products from biogenic 

VOC oxidation. This was suggested by the observation of oxidation products of - and ß-pinene 

displaying dimeric structures in laboratory-generated SOA and ambient fine particles using various 

HPLC/MS methods.40,372,377,547 Their detailed molecular structures and hence their formation 

pathways is still subject to speculation. However, prominent high-MW dimers from α-pinene 

ozonolysis (MW 368 and 358) have been structurally elucidated (Chapter 5.1). They were first 

thought to be non-covalent bonded dimers formed in the gas phase,370 then later suggested to be 

products from condensed-phase reactions in SOA.389b An alternative explanation is that these high-

MW dimers are formed by gas-phase reactions of stabilized Criegee Intermediates in the 

ozonolysis of terpenes, e.g., α-pinene.378 This would make them plausible candidates for the early 

stage of nucleation in monoterpene-rich environments such as boreal forests.  
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Another potential contribution of organic molecules to particle formation and growth would be 

heterogeneous or multiphase reactions. Such reactions are known to lead to organic products with 

low volatility, such as organic acids (e.g., Kroll et al.367). Another example is heterogeneous 

formation of organosulfates,342a,344b,409a,548 which are expected to have significantly lower vapor 

pressure than their precursors and would thus accelerate the growth of the ultrafine particles. 

5.5.4 Perspectives on nucleating organic compounds 

Despite a considerable number of studies and some advances in this topic over the last two 

decades, crucial gaps remain in the understanding of particle nucleation in the atmosphere, 

especially concerning the organic molecules involved in the formation of the critical nucleus and 

particle growth. Considerable work has focused on these processes in the boreal forest 

environment but there is a need for more investigations in other relevant environments such as 

tropical, marine, Arctic, and urban areas.  

Progress in the understanding of these processes will depend directly on the possibility to 

improve current instrumentation and methods and achieve the unambiguous identification of the 

organic molecules involved. Key points of improvement should be the accuracy of the molecular 

identification, time resolution, and detection sensitivity. Another important point is these highly 

sensitive systems can be studied without changing gas-particle partitioning of semi-volatile 

compounds or chemical equilibria of heterogeneous processes.  

5.6. Organic intermediates 

The lifetime of organic compounds in the atmosphere spans over 6 orders of magnitudes, from 

seconds to decades, because of their wide range of reactivity with atmospheric oxidants and 

various removal processes. While most of this review addresses the identification of long-lived 

organic compounds, short-lived ones, acting as intermediates in reaction mechanisms, also play 
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important roles in atmospheric chemistry and are therefore important to identify and monitor. Both 

for the elucidation of the reaction mechanisms in laboratory and for the understanding and 

prediction of real atmospheric systems, some degree of molecular identification is necessary of for 

these organic intermediates because their reactivity depends widely on their organic structure. But 

their detection and identification involves many more instrumental challenges than for stable ones. 

This chapter presents the most important examples of short-lived organic species in atmospheric 

chemistry, organic peroxy radicals and Criegee intermediates, and the solutions proposed so far 

for their monitoring and molecular identification. Some of the techniques presented are still largely 

under investigation and constitute by themselves emerging directions of research in this field. 

5.6.1. Organic peroxy radicals and the oxidizing capacity of the atmosphere 

a) Importance of organic radicals in the oxidative capacity of the atmosphere 

Some of the main discoveries on the fundamental radical cycles in the atmosphere were made in 

1970’s: the OH radical was first identified as the main atmospheric oxidant,549 and found to trigger 

the oxidation of organic gases and the production of organic peroxy radicals, “RO2”, where R is 

an organic group.550 The peroxy radicals HO2 and RO2s were then found to play essential roles in 

the production of O3 in the troposphere.3 In the following decades these reactions were 

implemented in atmospheric models and, for a long time, the consistencies between modeled and 

observed O3 concentrations gave the impression that these radical cycles were well understood. 

However, more recently, direct measurements of OH and HO2 showed important discrepancies 

with models,551 indicating that important parts of these cycles and, generally, of the oxidative (i.e., 

self-cleaning) capacity of the atmosphere were still not understood. Subsequent investigations 

suggested that the observed discrepancies were due to yet unknown reactions of the RO2 

radicals.507,551d,551e,552 However, in spite of recent efforts to differentiate main classes of organic 
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peroxy radicals553 (saturated and unsaturated ones), the lack of techniques able to distinguish 

different RO2s with specific organic structures (“speciated” measurements) strongly limit the 

investigation and definitive understanding of these chemical systems. But, because of their 

fundamental importance in the atmosphere, many techniques have been proposed to monitor 

RO2s,507,550a which are presented below. 

b) Observation techniques for RO2 radicals 

The classical techniques to monitor RO2s, still widely employed in laboratory, are optical and 

magnetic spectroscopies, such as UV550a and IR554 absorption spectroscopy, electron spin555 and 

paramagnetic resonance (ESR and EPR). In particular, in spite of considerable technical challenges 

(sampling on ice at 77 K and off-line analyses) ESR was successfully applied to the detection of 

RO2s in the atmosphere.555 However, a drawback of this technique, as well as with UV absorption, 

is that they only detect the radical center (-OO•) of RO2s, which is hardly affected by their organic 

structure, making the spectra unspecific.555a These techniques are thus mostly useful in laboratory, 

for the investigation of known radicals while, in the atmosphere, ESR provides total peroxy radical 

concentrations. IR absorption has been shown to be structure-specific554 and used in laboratory for 

the characterization of various RO2s. However the applicability of this technique to complex 

systems such as the atmosphere remains to be demonstrated. 

Other approaches were developed specifically for atmospheric detection, and remain today the 

main source of information on atmospheric RO2s. They are based on “chemical conversion”, which 

consists in converting all the RO2s into a single compound, easier to detect. A first version was the 

“peroxy radical chemical amplification” technique (PERCA), where the peroxy radicals were 

titrated with NO and the NO2 produced was measured by luminescence.556 Because of the 

interferences of other atmospheric compounds in the NO/NO2 conversion alternative conversion 



126 

 

systems were proposed, such as ROxMAx and PerCIMS, where the radicals are titrated by 34SO2 

to produce labeled H2SO4, in turn measured by MS.557 Another variation is ROxLIF, where the 

RO2s are converted into HO2, then OH, which is measured by laser-induced fluorescence (LIF) or 

fluorescence assay by gas expansion (FAGE).558 Recently, the FAGE approach was shown to be 

able to differentiate between saturated and unsaturated RO2s (alkene- and aromatic-derived ones) 

based on their conversion kinetics.553 While these techniques are valuable, as the only ones 

applicable to atmospheric RO2s today, the conversion processes suppress most or all information 

on individual RO2s and provide integrated signals (total RO2 concentrations). In addition, the 

response of the signals to individual RO2s varies widely with their structure, as it depends on their 

reactivity in the conversion scheme. It is thus difficult to predict for unknowns atmospheric RO2s. 

Finally, all these conversion schemes suffer from interferences in the atmosphere. These 

instrumental shortcomings are currently the main limitations to the full understanding of the 

atmospheric radical cycles. 

Another group of techniques that show some promising potential for the speciated detection, 

thus the identification, of RO2s in the atmosphere is mass spectrometry. As explained in the 

previous chapters, soft ionization techniques, avoiding fragmentation, provide MS signals directly 

reflecting the molecular weight of the analyte, with a potentially high level of identification for 

small masses (m/z < 300) when using TOF mass filtration. The detection of short-lived species, 

however, precludes separation prior to sampling, which can limit this identification. Over the last 

decades a range of ionization schemes for RO2s have been tested in laboratory: negative559 and 

positive560 photoionization, electron transfer with SF6
‒, O2

‒, or an excited rare gas,561 reaction with 

I‒ or O3
‒,562 reaction with O2

+,563 and proton transfer with H3O+ and its water clusters. Many of 

these techniques, while useful in laboratory, are difficult to apply to atmospheric systems, either 
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because they require low-pressure samples or lead to the fragmentation of the RO2s. Only proton 

transfer with H3O+ and its clusters appears to be suitable for atmospheric applications, as it avoids 

fragmentation and can be applied to atmospheric-pressure samples.564 Until now, this approach for 

monitoring RO2s has only been used in laboratory, in most cases with set-ups where the reaction 

and ionization regions are integrated.564 But adapting this technique to atmospheric sampling could 

be promising for the speciated detection of atmospheric RO2s and the investigation of the RO2 and 

HOx radical cycles. 

5.6.2. Criegee intermediates and ozonolysis 

Ozonolysis is an important reaction for all unsaturated organic compounds in the atmosphere, 

both in the gas and at the surface of particles. Until very recently the lack of direct observation of 

its postulated intermediates, the Criegee intermediates, left many unknowns in atmospheric 

mechanisms because these intermediates are suspected to react with a number of atmospheric 

gases, such as H2O, SO2, NO, and NO2. In particular, their reaction with water vapor has been 

suggested as source for OH radicals, contributing directly to the atmospheric radical cycles. 

Recently, the use of synchrotron photoionization allowed to observe for the first time the simplest 

Criegee intermediates, CH2OO,565 then CH3CHOO.566 While these intermediates were not created 

in ozonolysis reactions, they allowed for the first direct measurements of their rate constants with 

important atmospheric species such as H2O, SO2, NO and NO2, and evidences some significant 

discrepancies with those estimated previously.565b,566-567 In addition photoionization spectra 

allowed to distinguish the anti and syn isomers of CH3CHOO, and to evidence their very different 

reactivities with atmospheric gases.566 More recently IR spectroscopy was also used for the 

detection of Criegee intermediates,568 including in gas-phase ozonolysis reactions.569 The 
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investigation of Criegee intermediates is now a rapidly expanding field of research, in which the 

development of techniques for their detection in the atmosphere will be an important direction.  

5.6.3. Intermediate organic compounds in the atmospheric particulate phase  

As mentioned is previous chapters, the condensed-phase reactions of organic compounds in 

atmospheric aerosols have become an important field of investigation over the last two decades. 

The understanding of their mechanisms is important to determine the role of these reactions at 

regional and global scale. These mechanisms can be partly investigated by identifying specific 

markers, or by using some of the real-time techniques now available, such as aerosol MS (Section 

4.1.2), monitoring the evolution of aerosol composition in the atmosphere.140,395 However, these 

instruments record the chemical evolution by global parameters, such as O/C, H/C or ion ratios, 

and do not give access to mechanistic details. Similarly, the identification of stable reaction 

products, for instance by LC/MS techniques, is useful but not sufficient to elucidate the 

mechanisms, as many compounds can be obtained by different mechanisms. Examples of this are 

the current debates on whether the formation of organosulfates in atmospheric aerosols follows an 

ionic or radical mechanism, or the control of a range of organic reactions (condensation, 

acetalization, hydrolysis, etc.) by acid- or iminium (NH4
+) catalysis.409b,419a,420b,420c One approach 

to determine the contribution of different mechanisms to the chemical composition of aerosols can 

be to compare their respective product yields or isomeric ratios with those found in aerosols, as 

recently attempted.6,570 However, this is only applicable if the products of interest are either stable 

or have identical reactivity in aerosols. But, as in gas-phase chemistry, the most direct and 

unambiguous way to probe the mechanisms would be to directly observe the organic intermediates. 

This would, however, involve a much higher level of difficulty than in the gas because of the small 

volumes of samples. Thus, to our knowledge, such direct observation has not been attempted yet 
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in atmospheric condensed phases, and might remain one of the ultimate challenges in atmospheric 

chemistry. However, because of their central importance for the understanding of the fate of 

organic carbon in aerosols, the mechanistic investigation of condensed-phase organic reactions is 

likely to be an important direction of research in the near future.  

5.7. Health-hazardous compounds  

Besides the importance of atmospheric organic compounds for atmospheric chemistry and 

climate described in the previous Chapters, some of them also have toxic properties. The strongest 

evidence for the negative health effects of air pollution and, in particular of aerosol particles, result 

from epidemiological studies where short- or long-term exposure to increased levels of aerosol 

particles could be directly linked with pulmonary and cardio-vascular diseases, such as chronic 

obstructive pulmonary disease or asthma.571 Numerous toxicological studies have linked adverse 

health outcomes to primary572 as well as ambient aerosols.573 Investigations of the chemical 

properties, molecular interactions and health effects of hazardous compounds in atmospheric 

aerosols have been recently summarized in reviews.574 

Known toxic gases include inorganic compounds such as ozone, nitrogen oxides or carbon 

monoxide and a wide range of organic compounds such as small aromatics and aldehydes. Toxic 

particle-phase compounds represent an equally wide range, including transition metals and a large 

number of organics from polycyclic aromatic hydrocarbons to highly oxidizing compounds such 

as peroxides or radicals.575  

While the toxicity of atmospheric particles has been established for decades the identity of the 

compounds contributing to the adverse health effects observed in epidemiological studies, and the 

role of aerosol composition in toxicity are still poorly understood. Some specific toxicity 

mechanisms have been identified for a limited number of compounds (PAHs) and revealed that 
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reactive metabolites such as diol epoxides of PAHs have the potential to bind to deoxynucleic 

acids and proteins causing genotoxicity and carcinogenicity. But such detailed mechanistic 

understanding is not available for most health-hazardous aerosol components. One obstacle to this 

understanding is the complexity of the particles directly emitted, combined with the complexity 

resulting from atmospheric processing,576 making the identification of the compounds with adverse 

health effects a highly challenging task. Other reasons for this poor understanding are the low dose 

/ long-term health effects of atmospheric particles rather than their acute toxicity and the wide 

range of susceptibility in the population, including potential pre-existing (e.g., respiratory) risk.  

This chapter presents the analysis techniques used to identify and, more importantly for toxicity, 

quantify two main classes of toxic compounds in aerosol particles: PAHs, requiring structure-

specific identification and trace-level quantification, and reactive oxygen species (ROS), 

representing a wide group of compounds. As discussed below these two classes of compounds 

correspond to very different I-factors.  

PAHs were among the first compounds identified as toxic in air pollution particles, and are 

produced by fossil fuel combustion and biomass burning. They are present both in the gas and the 

condensed phase but the most toxic PAHs are particle-bound. Both parent-PAHs and oxidized and 

nitro-PAHs have been identified as toxic. A wide range of analytical techniques has been 

developed to separate and quantify individual PAHs in the gas and particle phase in the 

atmosphere. GCxGC methods271,268 and LC techniques were specifically developed to investigate 

oxidized and nitro-PAHs,577 but the reduced chromatographic resolution of LC methods compared 

to GC is often a limiting factor for the analysis of complex samples such as organic aerosols. MS 

is in many cases the detection technique of choice and a range of ionization methods were applied 

to PAHs. Electron ionization is most frequently used with GC but soft ionization methods such as 
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negative ion chemical ionization have also been applied to PAHs,578 allowing for detection limits 

down to the low pg levels258 and potentially also advanced structure identification via MS/MS. 

Recently, a thermal desorption GCxGC coupled with tandem mass spectrometry method reported 

detection limits in the sub-pg range for PAHs, oxidized and nitro-PAHs.467g LC offers a wider 

range of soft ionization methods than GC and APCI, in particular, achieves detection limits down 

to pg levels, thus lower than electrospray ionization.579 Coupling chromatography and advanced 

MS techniques allows to identify PAHs with high certainty, even in highly complex atmospheric 

aerosol samples, often with I-factors close to unity.  

MS techniques without chromatographic separation have also been applied to PAHs such as 

two-step laser mass spectrometry (L2MS). In this technique a first IR laser desorbs the organic 

material from the collection substrate (filter or impactor plate), and the second wavelength-specific 

UV laser selectively ionizes the PAHs.580 By tuning the ionization laser to selectively ionize the 

PAHs, this technique avoids artifacts due to other organic compounds present in the sample. L2MS 

is however generally qualitative but a few attempts to use it in a quantitative way have been made 

and resulted in detection limits in the pg range.581 Because L2MS is a one-dimensional technique 

its I-factor is inherently larger than for coupled techniques, and in the range of 10. Resonance-

enhanced multiphoton ionization has also been successfully applied to detect PAH in thermally 

evolved gases from PM samples.582  

Taking into account potential sampling artifacts is especially critical in the quantification of 

reactive compounds such as PAHs. Careful sampling procedures and controls are required to 

minimize their reaction on the sampling devices, which could lead to a severe underestimation of 

their concentrations.583 Isotope dilution methods using 13C- or 2H-labelled PAHs as references are 
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frequently being used to improve precision and accuracy of the quantification of PAHs by reducing 

calibration, sample preparation and matrix problems. 

However, because the toxicity of PAHs has been recognized for decades, long time series of 

PAHs atmospheric concentrations are available, especially at urban locations. In many regions the 

concentration of the most toxic ones, such as benzo[a]pyrene, has decreased by a factor of 10 over 

the last 30 years due to improved combustion technology. Yet respiratory diseases have steadily 

increased,584 implying that other aerosol compounds or properties need to be considered for these 

chronic health effects. Reactive oxygen species have gained significant attention as potential 

health-hazardous compounds over the last years. ROS is a generic term for all oxidizing 

compounds in aerosols, including transition metals, inorganic oxidants such as OH and H2O2, and 

organic compounds such as quinones, organic peroxides and radicals.  

The analysis of some organic ROS components is best achieved with the same analytical 

techniques as used for PAHs and presented above. Quinones, for example, have been quantified 

with GC/MS and LC/MS after derivatization, and resulted in detection limits in the pg range.585 

Other organic ROS such as (hydrogen-)peroxides and radicals are more difficult to analyze. Thus, 

analytical techniques have been developed to quantify the total concentration of ROS, or 

compound class such as peroxides, rather than individual compounds. The total concentration of 

all (hydrogen-)peroxides in organic aerosols was quantified using an iodometric method, and it 

was shown that a major fraction of the aerosol organic compounds generated in simulation 

chambers contains this functional group.575,586 Other studies have successfully attempted to 

quantify the total concentration of organic radicals587 by pro-fluorescent/fluorescent spin trap pairs, 

with detection limits in the low nmol/liter concentration range. On-line methods to quantify ROS 

have also been developed101 and showed that some components have very short lifetimes, of only 
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a few minutes. This underlines the need to develop careful protocols to avoid artifacts due to 

particle collection and sample work up in the quantification of highly reactive compounds such as 

peroxides or radicals. Other recent efforts to characterize ROS in aerosols proposed a different 

approach by using surrogate biological systems, such as natural antioxidants ascorbic acid or 

glutathione, to quantify the effect of particle-bound ROS on the anti-oxidant capacity of human 

lung.588 Thus, to the exception of the analysis of specific quinones, which can achieve an I-factor 

of 1, most of the recent techniques to characterize organic ROS focus on its quantification as a 

group of oxidizing compounds rather than as individual compounds. Thus the I-factor attributed 

to these techniques is large, of the order of I >100. 

In conclusion the analysis of health-hazardous organic compounds in the atmosphere is highly 

challenging. The difficulty lies not only in the identification and quantification of specific toxic 

compounds at trace levels but also in reproducing realistic exposure settings to simulate long time 

scales / low doses effects. For some compounds such as PAHs very advanced analytical methods 

have been established but other aspects of particle toxicity are still far from a compound-specific 

identification. The toxicity mechanisms of many other organic aerosol components are even less 

characterized and toxic and oxidative stress (triggered by ROS uptake or by the generation of ROS 

in the body) mechanisms are expected to be multiple.589 Future research in this area will thus need 

to establish quantitative relationships between a wide range of potentially toxic components in 

atmospheric aerosols and health effects, and to make more efforts to identify the toxicity resulting 

from specific compounds. Only such a compound-specific knowledge will ultimately allow to 

identify the relevant sources and to develop emission reduction strategies. 

6. Conclusion and perspectives  
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From an analytical point of view, exploring the chemical composition of the atmosphere and the 

chemical processes taking place in it involves as many unknowns, and nearly as many challenges, 

as exploring other unknown environments, such as the deep oceans or other planets. The numerous 

techniques presented in this review illustrate the tremendous increase of interest over the last 

decades for atmospheric constituents that are characteristic for our planet, organic compounds, and 

the considerable progress accomplished in the analytical tools allowing to study them. To 

overcome the numerous challenges presented by atmospheric problems, this progress has required 

not only the use of existing techniques from other disciplines, but also their adaptation to 

atmospheric applications and the development of entirely new techniques. In about three decades 

these techniques have brought a much clearer picture, both qualitatively and quantitatively, of the 

myriad of organic compounds present in the atmosphere, their sources, and their contribution to 

important processes such as air quality, the ozone cycle, and SOA formation. Over an even shorter 

period of time (the last two decades) the tools developed to study organic compounds in the 

atmospheric condensed-phases (e.g., aerosols and clouds) have revealed the wide complexity of 

these media and allowed to characterize their sources and compositional changes over their 

atmospheric lifetime by the identification of markers, in particular for biogenic and biomass 

burning SOA. Understanding the tight connection between gas- and particle-phase chemistries, the 

resulting SOA formation, and their contributions to atmospheric chemistry and climate have thus 

undergone significant advances and better descriptions can be anticipated in the near future. 

However, two main factors hamper this progress. One of them is the analytical expertise needed 

to identify organic compounds. In particular, non-specialists tend to overestimate the level of 

identification of organic compounds provided by a specific analytical technique, leading to reports 

of unverified or false compounds or processes. We hope that the discussion of the identification 
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capabilities of the different techniques presented in this review will avoid such shortcomings and 

stimulate interdisciplinary collaborations between atmospheric scientists of very different 

backgrounds to explore complex chemical atmospheric processes in the future. 

Another main difficulty is the analytical challenge presented by some compounds that are central 

in some key atmospheric processes. Examples of processes being barely in reach of current 

analytical capabilities today are given in Chapter 5: the role of organic compounds in nucleation, 

cloud formation, the aging of aerosol components, the formation of health-hazardous particles, 

and, via peroxy and Criegee intermediates, the oxidizing cycles of the atmosphere. The 

investigation of these processes will require further analytical developments, some of which are 

underway, and which could also benefit other chemical disciplines. 
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FIGURE CAPTIONS 

 

Figure 1. The application of the retrosynthetic analysis for the design of the synthetic pathways 

leading to 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a relevant marker for -pinene 

SOA aging.36 

 

Figure 2. Estimated atmospheric lifetimes of selected SOA marker compounds according to their 

volatility.590  

 

Figure 3: Summary of the most abundant analytical chemical techniques used to characterize 

organic compounds in the atmosphere as function of I factor. A decreasing I factor describes the 

increasing capability of a technique to identify the molecular structure of a compound. The y-axis 

describes the ability of a technique to characterize the entire organic mass present in the 

atmosphere. Coupling of two techniques (mainly involving chromatography) allows for a 

significantly increased I factor. Techniques frequently coupled to chromatography or suitable to 

coupling with chromatography are shown in blue, others in red. 

 

Figure 4. Illustration of the effect of various atmospheric processes on the δ13C of carbonaceous 

aerosols. Blue arrows denote depletion in the heavy isotope (lowering of the δ13C), red arrows 

denote enrichment (increasing δ13C) and green arrows indicate processes that may change in both 

directions. Reprinted with permission from ref. 179. Copyright 2013 American Geophysical Union 

and John Wiley & Sons, Inc.   
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Figure 5. Contour plot of the total ion current chromatogram of an urban aerosol sample examined 

by GCxGC−TOFMS (left) and the mass spectrum of a compound to identify aerosol constituents 

(right). Reprinted with permission from ref. 272. Copyright 2013 Elsevier. 

 

Figure 6. Examples of organic acids formed in the oxidation of methylglyoxal and analyzed using 

IC/ESI-MS. a. IC-ESI mass spectra of a mixed standard of acids: (A) acetic (not detected in ESI-

MS) and glycolic (m/z 75), (B) formic  (not detected in ESI-MS), (C) pyruvic (m/z 87), (D) 

glyoxylic  (m/z 73), (E) succinic (m/z 117), (F) malonic (m/z 103), (I) oxalic (m/z 89). b-d. IC-ESI-

MS spectra of acids at increasing concentrations of methylglyoxal. b. 30 μM: (A) the retention 

time (tr) of acetic/glycolic acids, (B) tr of formic acid, (C) pyruvic acid, (I) oxalic acid, (J) 

mesoxalic acid (m/z− 117).  c. 300 μM: (A + B) tr of acetic/glycolic acids + formic acid, (C) pyruvic 

acid, (I) oxalic acid, (J) mesoxalic acid.  d. 3000 μM: (A + B + C) tr of acetic/glycolic acids +formic 

acid + pyruvic acid, (E) tr of succinic acid, (F) tr of malonic acid, (I) oxalic acid. Reprinted with 

permission from ref. 305a. Copyright 2010 Elsevier.   

 

Figure 7: van Krevelen plots for molecular formulas assigned to FTICR mass spectra peaks in 

aerosol samples from a) New York and b) Virginia. Blue diamonds represent compounds 

containing only C, H, and O, yellow squares represent S-containing compounds, and red triangles 

are N-containing compounds. Black ovals represent traditional potential source molecular classes. 

The green SOA oval represents data from laboratory investigations of SOA. Adapted from Ref.351 

 

Figure 8: (−)ESI-ion trap MS data for a prominent high-MW 358 dimer present in α-pinene 

ozonolysis SOA, assigned to a pinyl diaterpenyl ester:  (A) first-order mass spectrum; (B) m/z 357 
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MS2 spectrum; (C1) and (C2) m/z 357 → m/z 171 MSn (n = 3, 4) spectra; and (D1) and (D2) m/z 

357 → m/z 185 MSn (n = 3, 4) spectra. The MSn data obtained by fragmentation of m/z 171 

establish that diaterpenylic acid is a monomeric unit, whereas those obtained by fragmentation of 

m/z 185 identify cis-pinic acid as a second monomeric unit, since exactly the same MS patterns 

are found by fragmenting deprotonated terpenylic and cis-pinic acids.  Adapted from: Yasmeen et 

al.40 

 

Figure 9. Contributions of different sources, in particular of the photolysis of organic gases 

(circled in red) to the radical budget in Mexico City during the MCMA-2006 campaign.509 

Acronyms: MGLY, methylglyoxal; GLY, glyoxal; ALD, aldehydes. 

 

 

  



139 

 

Figure 1 

 

 

  



140 

 

 
Figure 2 
 
 
 
 
 

 
 

 

  



141 

 

 

Figure 3 

 

 

  



142 

 

 

Figure 4 

 

 

  



143 

 

 

Figure 5 

 

 

  



144 

 

 

Figure 6 

 

  



145 

 

 

Figure 7 

 

  



146 

 

 
Figure 8 
 

 
 



 147

 
Figure 9 
 

 

 

  



 148

Corresponding Authors 

*to whom correspondence should be addressed. barbara.noziere@ircelyon.univ-lyon1.fr; 

markus.kalberer@atm.ch.cam.ac.uk; magda.claeys@uantwerpen.be 

ACKNOWLEDGMENTS  

The authors gratefully acknowledge the European Science Foundation (contract EW12-023) for 

supporting this review and the Strategic Workshop which initiated it, "The Molecular 

Identification of Organic Compounds in the Atmosphere", Cambridge, UK, March 24-28, 2013. 

Colleagues who were not involved in the writing of this review but actively participated in the 

workshop and shared their knowledge, Dr. Euripides Stephanou, University of Crete, Greece, Dr. 

Jean-Luc Jaffrezo, CNRS/Laboratoire de Glaciologie et Géophysique de l'Environnement, 

France), and Dr. Gyula Kiss, University of Pannonia, Hungary, are warmly thanked. BN also 

thanks Drs. Shanhu Lee, Kent University, USA, Craig A. Taatjes, Livermore Laboratories, USA, 

Rainer Volkamer, University of Colorado, USA, and Oliver Welz, University of Duisburg-Essen, 

Germany, for helpful discussions and suggestions on the manuscript.  

  



 149

AUTHORS BIOGRAPHIES 

 

Barbara Nozière 

Barbara Nozière received a Ph.D. in Physical Chemistry from the University of Bordeaux, France, 

in 1994. After post-doctoral studies at the Technical University of Wuppertal, Germany, and the 

National Center for Atmospheric Research (NCAR), Boulder, USA, she was an Assistant 

Professor at the University of Miami, USA, then a Professor at the University of Stockholm, 

Sweden (Marie Curie Excellence Chair awarded from the European Commission). Since 2011 she 

is a Senior Researcher at the Centre National de la Recherche Scientifique (CNRS) in Lyon, 

France. Her expertise and research interests are on the reactivity and physical chemistry of organic 

compounds in the atmosphere, both in the gas and in aerosols. Current topics include reactions 

between organic compounds and inorganic salts in aerosols, surface-active compounds and their 

role on cloud formation, and the detection of organic peroxy radicals in the gas. 

 



 150

Markus Kalberer 

Markus Kalberer studied Environmental Sciences at the Eidgenössische Technische Hochschule 

(ETH), Zurich, and obtained a  Ph.D. in Chemistry from the University of Bern (both in 

Switzerland) in 1998. He subsequently performed  postdoctoral studies at the California Institute 

of Technology in Pasadena, USA. He returned to Switzerland for a Habilitation at ETH, Zurich, 

and is now Reader in Atmospheric Sciences at the University of Cambridge, UK. His research 

interests include the formation, reactivity, and composition of organic aerosols, and the 

investigation of negative health effects of atmospheric particles with chemical and cell culture 

studies. 

 

Magda Claeys 

Magda Claeys received a Ph.D. in Chemistry from Ghent University, Belgium, in 1974, with 

research on bio-organic mass spectrometry. Since 1978 she is affiliated with the University of 

Antwerp, where she held research positions supported by the Research Foundation Flanders 

(FWO), was promoted to full professor in 2000, and since 2013 continues her research as an 

emeritus professor. She has a long-standing experience with organic analytical mass spectrometry 

and centered  on biomolecular mass spectrometry  during her early career. For the last 20 years 

her research focused on the molecular characterization and speciation of atmospheric aerosols. A 



 151

highlight of her career was the discovery of the isoprene SOA markers, the 2-methyltetrols, in 

Amazonian aerosols. 

 

James D. Allan 

James D. Allan graduated in Physics with Computational Physics in 2000 and received a Ph.D. in 

Atmospheric Physics in 2004, both at the University of Manchester Institute of Science and 

Technology (UMIST). He has since held a research position in the National Centre for 

Atmospheric Science (NCAS) at the University of Manchester School of Earth, Atmospheric and 

Environmental Sciences and currently holds the post of senior research fellow at the latter. Much 

of his work during his Ph.D. and subsequent has concerned the development of the Aerodyne 

Aerosol Mass Spectrometer (particularly data analysis techniques) and application to the online, 

in-situ measurement of tropospheric aerosols. This has included fieldwork in a wide variety of 

environments and on ground, ship and aircraft based platforms. 

 



 152

Barbara D'Anna 

Barbara D'Anna graduated in Physical Chemistry at the University of Torino, Italy, in 1996, and 

received a Ph.D. in Atmospheric Chemistry from the University of Oslo, Norway, in 2001, on the 

atmospheric degradation of volatile organic compounds. After postdoctoral stays at the University 

of California at Irvine  (UCI) on aerosol photochemistry, and Queensland University of 

Technology (QUT), Brisbane, Australia, on marine aerosol measurements, she was enrolled at the 

CNRS, France, in 2006. She is now a Senior Researcher at the CNRS in Lyon and her main 

scientific interests involve aerosol reactivity, heterogeneous chemistry, and in-situ tropospheric 

aerosol measurements. 

 

Stefano Decesari 

Stefano Decesari is an expert in Nuclear Magnetic Resonance (NMR) spectroscopy applied to 

atmospheric organic aerosol chemistry. He obtained a Ph.D. in Chemistry from the University of 

Bologna, Italy, in 2001. He was trained in NMR methods for environmental samples during his 

Ph.D. and at the Environmental Molecular Sciences Laboratory of the Pacific Northwest National 

Laboratory (EMSL-PNNL) in Richmond, Washington, USA. He was among the first scientists 

showing the suitability of proton NMR spectroscopy for the characterization of water-soluble 

organic carbon in aerosol and atmospheric aqueous samples. He developed NMR applications for 



 153

aerosol source apportionment and discovery of new molecular markers, such as low-molecular 

weight aliphatic amines for biogenic marine particles. He was involved in fourteen international 

projects and he has coordinated three intensive field campaigns for sampling and characterizing 

atmospheric aerosols in polluted environments. 

 

Emanuela Finessi 

Emanuela Finessi obtained a Ph.D. in Chemistry from the University of Bologna, Italy, in 2010, 

on the chemical characterization of organic aerosol and source identification. She has over seven 

years of research experience in atmospheric chemistry, working on a broad range of collaborative 

projects within both field and simulation chamber experiments. Her research interests include 

processes related to the formation, transformation and fate of organic aerosol, brown carbon and 

organic nitrogen species in atmospheric particles. Since joining the University of York, UK, in 

2011, she has focused on the aqueous processing of reactive carbonyls and interactions with 

inorganics by using a wide range of mass spectrometric techniques. Recent activities include the 

development of sensitive and selective methods for the determination of trace organic nitrogen 

species in complex matrices. 



 154

 

Marianne Glasius 

Marianne Glasius obtained a Ph.D. in Chemistry from the University of Southern Denmark, 

Odense, in 2000, based on investigations of monoterpene oxidation products in aerosols and 

sources to carboxylic acids in the atmosphere. This research was partly carried out at the European 

Commission’s Joint Research Centre, Ispra, Italy. She has worked with a very broad range of 

analytical techniques in projects related to environmental chemistry, synthesis, and process 

understanding. Since 2006 she has been appointed to Associate Professor at the Department of 

Chemistry, Aarhus University, Denmark. There, she has built up a research group and a laboratory,  

focusing on development and application of advanced chemical analyses (using HPLC/q-TOF-MS 

and GC/MS) for identification and characterization of organic compounds in aerosols and other 

complex matrices such as bio-oils. 

 

Irena Grgić 



 155

Irena Grgić obtained a Ph.D. in Chemistry from the University of Ljubljana, Slovenia, in 1990. 

Currently she is a Senior Scientist at the Analytical Chemistry Laboratory of the National Institute 

of Chemistry, Slovenia. Since 2003 she is affiliated with the Faculty of Chemistry and Chemical 

Technology, Ljubljana, and since 2009 she holds an Associate Professorship at the Faculty for 

Environmental Sciences  of the University of Nova Gorica, Slovenia. She has been actively 

involved in research on atmospheric multiphase processes for more than 20 years. Her research 

deals with fundamental processes in atmospheric aqueous phase chemistry, chemical composition 

and reactivity of aerosols, formation of secondary organic aerosols and analytical methods for 

environmentally important species, and involves both field measurements and laboratory 

experiments. 

 

Jacqueline Hamilton 

Jacqueline Hamilton obtained a Ph.D. in Chemistry from the University of Leeds in 2003. She was 

appointed a Lecturer in Atmospheric Chemistry at the University of York in 2008. She has 

developed independent research themes in atmospheric aerosol chemistry underpinning a variety 

of laboratory, simulation chamber and field observations. She has a strong interest in analytical 

science, developing methods and instrumentation in comprehensive two-dimensional gas 

chromatography (GCXGC), HPLC/MS and high-resolution Fourier transform ion cyclotron 



 156

resonance mass spectrometry (FTICR-MS).  These methods, although designed to study the 

atmosphere, have been translated to other fields with recent papers in food chemistry, fuels, energy 

and health applications.  She won the 2009 Desty Memorial Award for Innovation in Separation 

science. 

 

Thorsten Hoffmann 

Thorsten Hoffmann obtained a Ph.D. in Chemistry from the University of Dortmund, Germany, in 

1992. Since 2003 he is Professor of Analytical Chemistry at the Johannes Gutenberg-University 

of Mainz, Germany. His main research activities are the design and development of tailored 

methods to chemically characterize biological and environmental matrices. The motivation is a 

better understanding of  biosphere-atmosphere interactions, e.g., by the investigation of the 

sources, formation pathways and chemical transformation of biogenic aerosol particles, or the 

development of trace analytical techniques to investigate climate archives (ice cores, speleothems). 

Most of the analytical research is focused on organic analytes in combination with mass 

spectrometry (GC/MS, LC/MS) with a certain emphasis on the development of real-time methods 

for atmospheric aerosol characterization (aerosol mass spectrometry). 



 157

 

Yoshiteru Iinuma 

Yoshiteru Iinuma received a Ph.D. in Physics with focus on physical and chemical characterization 

of atmospheric aerosols from the University of New South Wales, Sydney, Australia, in 2002.  He 

joined the Leibniz Institute for Tropospheric Research (TROPOS) in Leipzig, Germany, as a 

postdoctoral fellow, and in 2008 he became a research scientist at TROPOS. His main research 

focuses on the physical and chemical characterization of both the gaseous and particulate organic 

compounds in field and laboratory-generated samples using various chromatographic and mass 

spectrometric techniques. 

 

Mohammed Jaoui 

Mohammed Jaoui received a Ph.D. in Physical and Analytical Chemistry in 1998 from the 

University of Metz, France. He carried out postdoctoral research in Atmospheric Chemistry at the 



 158

University of North Carolina at Chapel Hill, USA. Subsequently, he joined Alion Science and 

Technology as a Senior scientist, where he is conducting studies in atmospheric chemistry. For the 

last 15 years his research focused on the molecular characterization and speciation of atmospheric 

gas and aerosols using mass spectrometric techniques. 

 

Ariane Kahnt 

Ariane Kahnt studied Pharmacy at the University of Halle, Germany, and obtained a Ph.D. in 

Natural Sciences from the University of Leipzig, Germany, in 2012. During her Ph.D. research 

she studied atmospheric oxidation products and SOA formation from monoterpene ozonolysis 

under the supervision of Professor Hartmut Herrmann. After postdoctoral studies at the University 

of Antwerp, Belgium, where she continued to identify organic compounds in atmospheric aerosol 

samples using mass spectrometric techniques, she recently joined the Faculty of Biology at the 

University of Auckland, New Zealand. Her current research involves genomic, proteomic and 

metabolomic analysis using mass spectrometry. 



 159

 

Christopher J. Kampf 

Christopher J. Kampf studied Chemistry at the Johannes Gutenberg-University Mainz, Germany, 

where he also did his Ph.D. work in the group of Professor Thorsten Hoffmann and obtained a 

Ph.D. degree in 2012. His Ph.D. work dealt with the characterization and quantification of reactive 

dicarbonyl compounds in atmospheric aerosols. Afterwards he carried out postdoctoral research at 

the University of Colorado, Boulder, USA, before starting as a project leader for Analytical 

Chemistry of Proteins and Organic Aerosols at the Max Planck Institute for Chemistry in Mainz. 

His current research focuses on the identification of proteins in atmospheric aerosols by means of 

state-of-the-art mass spectrometry, elucidation of protein modifications and degradation processes 

introduced by air pollutants, as well as formation processes of light absorbing compounds in 

secondary organic aerosols. 

 



 160

Ivan Kourtchev 

Ivan Kourtchev studied Chemistry at the Mendeleyev University of Chemical Technology of 

Russia, Moscow, graduating with an Engineering degree (B.Sc. equivalent) in 1997. After 

spending two years at the home institution as an engineer, he continued his studies at Oklahoma 

State University, USA, graduating in 2002 with a M.Sc. in Biosystems Engineering. He 

subsequently performed Ph.D. studies at the University of Antwerp, Belgium, on the molecular 

characterization of atmospheric aerosols  and obtained a Ph.D. in Chemistry in 2008. His research 

interests in analytical and physical chemistry strengthened after postdoctoral stays at University 

College Cork, Ireland, and the Joint Research Centre of European Commission, Belgium. In 2011 

he was awarded a Marie Curie Fellowship to perform research in high resolution mass 

spectrometry and atmospheric chemistry at the University of Cambridge, UK, where he is currently 

employed as a research associate. 

 

Willy Maenhaut 

Willy Maenhaut is an atmospheric and analytical chemist. In 1972 he obtained a Ph.D. degree in 

Chemistry from Ghent University, Belgium. He has over 45 years of experience in atmospheric 

chemistry, with emphasis on (experimental) atmospheric aerosol research. He is (co-)author of 



 161

over 300 refereed publications in international journals and of over 50 book chapters. He is a highly 

cited researcher in the field of geosciences in the 2014 Thomson Reuters list and he is a co-

recipient of the 2014 Haagen-Smit prize of the journal Atmospheric Environment. He is at present 

editor of the international journals “Atmospheric Chemistry and Physics” (ACP) and 

“Atmospheric Measurement Techniques” (AMT). Willy Maenhaut is since 1 October 2010 

honorary professor at Ghent University and he is since then also affiliated with the University of 

Antwerp. 

 

Nick Marsden 

Nick Marsden graduated in Geology from the University of Manchester in 1997 and subsequently 

worked for a commercial instrument manufacturer (Waters Corporation) in the service, technical 

support and development of high resolution time-of-flight mass spectrometers. He is currently a 

postgraduate student at the University of Manchester School of Earth, Atmospheric and 

Environmental Sciences, where he is developing a laser ablation mass spectrometer for single 

particle analysis. 



 162

 

Sanna Saarikoski 

Sanna Saarikoski obtained a M.Sc. degree in Analytical Chemistry from the University of 

Helsinki, Finland, in 2002, and obtained a Ph.D. degree from the same university in 2008. Since 

2002 she has been employed at the Finnish Meteorological Institute in Helsinki as a Research 

Scientist. In 2009 she performed  postdoctoral research at the Cooperative Institute for Research 

in Environmental Sciences (CIRES) at Boulder, Colorado, USA. The focus of her research has 

been on the chemical composition of aerosols and in recent years especially on aerosol mass 

spectrometry. 

 

Jürgen Schnelle-Kreis 

Jürgen Schnelle-Kreis obtained a Ph.D. in Analytical Chemistry from the University of Paderborn, 

Germany, in 1990. Since 1991 he is active in the analysis of organic composition of airborne 



 163

particulate matter in different positions at the Institute of Ecological Chemistry of the German 

National Research Center for Environment and Health, the Institute for Analytical Chemistry of 

the Technical University of Munich, and the Department of Analytical Chemistry of the Bavarian 

Institute of Applied Environmental Research and Technology in Augsburg, Germany. Since 2009 

he is Deputy Head of the Cooperation Group “Comprehensive Molecular Analysis” of the 

Helmholtz Zentrum München, German Research Center for Environmental Health. His research 

is focused on the chemical characterization of organic aerosol and identification of sources as well 

as health effects of ambient aerosols. 

 

Jason D. Surratt 

Jason D. Surratt received a Ph.D. in Chemistry in 2010 from the California Institute of Technology 

in Pasadena, California, USA. The American Association for Aerosol Research awarded him the 

Sheldon K. Friedlander Award for his “outstanding dissertation work in aerosol science and 

technology” in 2013. In 2010 he began a tenure-track position as an Assistant Professor at the 

University of North Carolina at Chapel Hill in the Department of Environmental Sciences and 

Engineering. He has a wide experience with the detailed chemical characterization of SOA 

formation using mass spectrometric techniques. A highlight of his career is the discovery of 



 164

organosulfate formation from the atmospheric oxidations of isoprene and monoterpenes, and thus, 

providing a set of molecular markers for secondary organic aerosols of a mixed biogenic/ 

anthropogenic origin. 

 

Sönke Szidat 

Sönke Szidat received a Ph.D in Chemistry from the University of Hannover, Germany, in 2000, 

having carried out research on the long-lived radioisotope 129I in the environment. He performed 

postdoctoral research at the University of Bern, Switzerland. In 2007, he became group head and 

lecturer at the University of Bern. He received the Atmospheric Chemistry and Physics (ACP) 

Award of the ACP Commission of the Swiss Academy of Sciences in 2008, the Fritz-Strassmann-

Preis of the Nuclear Chemistry Division of the German Chemical Society in 2009, and the 

habilitation at the University of Bern in 2009. He is the head of the Laboratory for the Analysis of 

Radiocarbon with accelerator mass spectrometry at Bern since 2013. His research interests are 

measurements of the long-lived radioisotope 14C in the environment with focus on source 

apportionment of carbonaceous aerosols. 



 165

 

Rafal Szmigielski 

Rafal Szmigielski received a M.Sc. in Chemistry from Warsaw University of Technology, Poland, 

in 1999, whereupon he joined the Institute of Organic Chemistry of the Polish Academy of 

Sciences (PAS) and obtained a Ph.D. in 2004 with research on gas-phase ion chemistry. He 

performed postdoctoral research at the same institute and between 2006 and 2009 at the University 

of Antwerp, Belgium. There, he became involved in the molecular characterization of SOA using 

mass spectrometry and was awarded a Marie Curie Fellowship. A highlight of his career was the 

discovery of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a marker for aged α-pinene SOA. 

Since 2010 he is affiliated with the Institute of Physical Chemistry of the PAS, where he heads the 

Laboratory of Environmental Chemistry and continues studying SOA formation and processing 

using hyphenated techniques and organic synthesis. 

 



 166

Armin Wisthaler received a Ph.D. in Physics in 2001 from the University of Innsbruck, where he 

subsequently worked as a postdoctoral fellow and assistant professor. He was employed as a Senior 

Scientist at the Norwegian Institute of Air Research (NILU) between 2011 and 2013 before being 

appointed Professor of Atmospheric Chemistry at the University of Oslo in 2014. His expertise 

includes ion chemistry and chemical ionization mass spectrometry (in particular PTR-MS) as well 

as atmospheric chemistry. 

  



 167

ABBREVIATIONS 

ACS   American Chemical Society 

AMS   aerosol mass spectrometer 

API   atmospheric pressure ionization 

APCI   atmospheric pressure chemical ionization 

ASMS   American Society for Mass Spectrometry 

ATOFMS   aerosol time-of-flight mass spectrometer 

BBOA    biomass burning organic aerosol  

BVOC   biogenic volatile organic compound 

Cn   organic compound with n carbon atoms 

CCN   cloud condensation nuclei 

CCNC   cloud condensation nuclei counter 

CE   capillary electrophoresis  

CFC   chlorofluorocarbon 

CI   chemical ionization  

CMB   chemical mass balance 

CRDS    cavity ring down spectroscopy  

2D   two-dimensional 
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Da   Dalton 

DBE   double bond equivalent 

DCA   dicarboxylic acid 

DESI   desorption electrospray ionization 

DOAS    differential optical absorption spectroscopy  

EC   elemental carbon 

ECD   electron capture detector  

EI   electron ionization 

ESI   electrospray ionization  

FAGE    fluorescence assay by gas expansion 

FID   flame ionization detector  

FTICR    Fourier transform ion cyclotron 

FTIR   Fourier transform infrared spectroscopy 

GC   gas chromatography 

GCxGC   two-dimensional GC 

GHG   greenhouse gas  

HCFC    hydrochlorofluorocarbon 
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HFC    hydrofluorocarbon 

HILIC    hydrophilic interaction liquid chromatography 

HOA    hydrocarbon-like organic material 

HOx   OH + HO2 

HPAEC   high-performance anion-exchange chromatography 

HPLC   high-performance liquid chromatography 

HR   high-resolution 

HTDMA   hygroscopicity tandem differential mobility analyzer 

HULIS   humic-like substances 

IC   ion chromatography 

ILC   interlaboratory comparison 

IPCC   Intergovernmental Panel for Climate Change 

IR   infrared  

IUPAC   International Union for Pure and Applied Chemistry 

KIE   kinetic isotope effect  

KM   Kendrick mass 

L2MS    two-step laser mass spectrometry 
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LC   liquid chromatography 

LDI   laser desorption/ionization 

LP   long-path 

LV   low-volatility  

MBTCA   3-methyl-1,2,3-butanetricarboxylic acid 

MCA    multi-component analysis  

MS   mass spectrometry  

MS/MS or MSn tandem mass spectrometry 

MW   molecular weight 

m/z   mass-to-charge ratio 

NMR   nuclear magnetic resonance 

NOx   nitrogen oxides (NO + NO2) 

OC   organic carbon 

OOA   oxygenated organic material 

OSC    carbon oxidation state 

PAH   polyaromatic hydrocarbon 

PBAP    primary biogenic aerosol particle 
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PAD   pulsed amperometric detection 

PAN   peroxyacyl nitrate 

PI   photoionization 

PILS   particle-into-liquid sampler  

PMn   particulate matter with an aerodynamic diameter ≤n μm 

PMF   positive matrix factorization  

POA   primary organic aerosol  

Q   quadrupole 

ppm   parts per million 

ppb   parts per billion 

ppt   parts per trillion 

RO2   peroxy radical 

ROS   reactive oxygen species  

SOA   secondary organic aerosol 

SV   semi-volatile  

TAG   thermal desorption aerosol gas chromatography  

TC   total carbon 
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TOF   time-of-flight 

UHR   ultra-high resolution 

UPLC   ultra-performance LC 

UV   ultra-violet 

Vis   visible 

VK   van Krevelen 

VOC   volatile organic compound 

VUV   vacuum ultra-violet  

WSOC     water-soluble organic carbon 
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