184 research outputs found
Cladding strategies for building-integrated photovoltaics
Photovoltaic cladding on the surfaces of commercial buildings has the potential for considerable reductions in carbon emissions due to embedded renewable power generation displacing conventional power utilization. In this paper, a model is described for the optimization of photovoltaic cladding densities on commercial building surfaces. The model uses a modified form of the ‘fill factor’ method for photovoltaic power supply coupled to new regression-based procedures for power demand estimation. An optimization is included based on a defined ‘mean index of satisfaction’ for matched power supply and demand (i.e., zero power exportation to the grid). The mean index of satisfaction directly translates to the reduction in carbon emission that might be expected over conventional power use. On clear days throughout the year, reductions of conventional power use of at least 60% can be achieved with an optimum cladding pattern targeted to lighting and small power load demands
Proposed ontology for cognitive radar systems
Cognitive radar is a rapidly developing area of research with many opportunities for innovation. A significant obstacle to development in this discipline is the absence of a common understanding of what constitutes a cognitive radar. The proposition in this study is that radar systems should not be classed as cognitive, or not cognitive, but should be graded by the degree of cognition exhibited. The authors introduce a new taxonomy framework for cognitive radar against which research, experimental and production systems can be benchmarked, enabling clear communication regarding the level of cognition being discussed
Experimentation of an adaptive and autonomous RF signalling strategy for detection
In this paper we discuss a straightforward signalling strategy for target detection and shared spectrum usage. We further combine additional practical concerns such as waveform modulus and extended target matched illumination to improve detection performance in dynamic interference environments. The impetus for the straightforward, yet suboptimal, strategy are the low cost drivers for small sensing platforms, such as small unmanned aerial systems (SUAS). Herein, we discuss a complete strategy and algorithm for sensing the environment, interrogating the target response and adapting the transmitted waveform to avoid the primary users while putting more energy on target than previous non-adaptive strategies. We give simulation results and initial experimental results to corroborate the theoretical and simulated findings
Non-conformal Hydrodynamics in Einstein-dilaton Theory
In the Einestein-dilaton theory with a Liouville potential parameterized by
, we find a Schwarzschild-type black hole solution. This black hole
solution, whose asymptotic geometry is described by the warped metric, is
thermodynamically stable only for . Applying the gauge/gravity
duality, we find that the dual gauge theory represents a non-conformal thermal
system with the equation of state depending on . After turning on the
bulk vector fluctuations with and without a dilaton coupling, we calculate the
charge diffusion constant, which indicates that the life time of the quasi
normal mode decreases with . Interestingly, the vector fluctuation with
the dilaton coupling shows that the DC conductivity increases with temperature,
a feature commonly found in electrolytes.Comment: 27 pages and 2 figures, published in JHE
Charged Dilatonic AdS Black Branes in Arbitrary Dimensions
We study electromagnetically charged dilatonic black brane solutions in
arbitrary dimensions with flat transverse spaces, that are asymptotically AdS.
This class of solutions includes spacetimes which possess a bulk region where
the metric is approximately invariant under Lifshitz scalings. Given fixed
asymptotic boundary conditions, we analyze how the behavior of the bulk up to
the horizon varies with the charges and derive the extremality conditions for
these spacetimes.Comment: References update
Wandering behaviour prevents inter and intra oceanic speciation in a coastal pelagic fish
Small pelagic fishes have the ability to disperse over long distances and may present complex evolutionary histories. Here, Old World Anchovies (OWA) were used as a model system to understand genetic patterns and connectivity of fish between the Atlantic and Pacific basins. We surveyed 16 locations worldwide using mtDNA and 8 microsatellite loci for genetic parameters, and mtDNA (cyt b; 16S) and nuclear (RAG1; RAG2) regions for dating major lineage-splitting events within Engraulidae family. The OWA genetic divergences (0-0.4%) are compatible with intra-specific divergence, showing evidence of both ancient and contemporary admixture between the Pacific and Atlantic populations, enhanced by high asymmetrical migration from the Pacific to the Atlantic. The estimated divergence between Atlantic and Pacific anchovies (0.67 [0.53-0.80] Ma) matches a severe drop of sea temperature during the Gunz glacial stage of the Pleistocene. Our results support an alternative evolutionary scenario for the OWA, suggesting a coastal migration along south Asia, Middle East and eastern Africa continental platforms, followed by the colonization of the Atlantic via the Cape of the Good Hope.Portuguese Foundation for Science & Technology (FCT) [SFRH/BD/36600/2007]; FCT [UID/MAR/04292/2013, SFRH/BPD/65830/2009]; FCT strategic plan [UID/Multi/04326/2013]info:eu-repo/semantics/publishedVersio
Observations of discrete harmonics emerging from equatorial noise
A number of modes of oscillations of particles and fields can exist in space plasmas. Since the early 1970s, space missions have observed noise-like plasma waves near the geomagnetic equator known as ‘equatorial noise’. Several theories were suggested, but clear observational evidence supported by realistic modelling has not been provided. Here we report on observations by the Cluster mission that clearly show the highly structured and periodic pattern of these waves. Very narrow-banded emissions at frequencies corresponding to exact multiples of the proton gyrofrequency (frequency of gyration around the field line) from the 17th up to the 30th harmonic are observed, indicating that these waves are generated by the proton distributions. Simultaneously with these coherent periodic structures in waves, the Cluster spacecraft observes ‘ring’ distributions of protons in velocity space that provide the free energy for the waves. Calculated wave growth based on ion distributions shows a very similar pattern to the observations
Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach
Cooperation is of utmost importance to society as a whole, but is often
challenged by individual self-interests. While game theory has studied this
problem extensively, there is little work on interactions within and across
groups with different preferences or beliefs. Yet, people from different social
or cultural backgrounds often meet and interact. This can yield conflict, since
behavior that is considered cooperative by one population might be perceived as
non-cooperative from the viewpoint of another.
To understand the dynamics and outcome of the competitive interactions within
and between groups, we study game-dynamical replicator equations for multiple
populations with incompatible interests and different power (be this due to
different population sizes, material resources, social capital, or other
factors). These equations allow us to address various important questions: For
example, can cooperation in the prisoner's dilemma be promoted, when two
interacting groups have different preferences? Under what conditions can costly
punishment, or other mechanisms, foster the evolution of norms? When does
cooperation fail, leading to antagonistic behavior, conflict, or even
revolutions? And what incentives are needed to reach peaceful agreements
between groups with conflicting interests?
Our detailed quantitative analysis reveals a large variety of interesting
results, which are relevant for society, law and economics, and have
implications for the evolution of language and culture as well
Stringy Stability of Charged Dilaton Black Holes with Flat Event Horizon
Electrically charged black holes with flat event horizon in anti-de Sitter
space have received much attention due to various applications in Anti-de
Sitter/Conformal Field Theory (AdS/CFT) correspondence, from modeling the
behavior of quark-gluon plasma to superconductor. Crucial to the physics on the
dual field theory is the fact that when embedded in string theory, black holes
in the bulk may become vulnerable to instability caused by brane
pair-production. Since dilaton arises naturally in the context of string
theory, we study the effect of coupling dilaton to Maxwell field on the
stability of flat charged AdS black holes. In particular, we study the
stability of Gao-Zhang black holes, which are locally asymptotically anti-de
Sitter. We find that for dilaton coupling parameter > 1, flat black
holes are stable against brane pair production, however for 0 < < 1,
the black holes eventually become unstable as the amount of electrical charges
is increased. Such instability however, behaves somewhat differently from that
of flat Reissner-Nordstr\"om black holes. In addition, we prove that the
Seiberg-Witten action of charged dilaton AdS black hole of Gao-Zhang type with
flat event horizon (at least in 5-dimension) is always logarithmically
divergent at infinity for finite values of , and is finite and positive
in the case tends to infinity . We also comment on the robustness of
our result for other charged dilaton black holes that are not of Gao-Zhang
type.Comment: Fixed some confusions regarding whether part of the discussions
concern electrically charged hole or magnetically charged one. No changes to
the result
The Vigilance Decrement in Executive Function Is Attenuated When Individual Chronotypes Perform at Their Optimal Time of Day
Time of day modulates our cognitive functions, especially those related to executive control, such as the ability to inhibit inappropriate responses. However, the impact of individual differences in time of day preferences (i.e. morning vs. evening chronotype) had not been considered by most studies. It was also unclear whether the vigilance decrement (impaired performance with time on task) depends on both time of day and chronotype. In this study, morning-type and evening-type participants performed a task measuring vigilance and response inhibition (the Sustained Attention to Response Task, SART) in morning and evening sessions. The results showed that the vigilance decrement in inhibitory performance was accentuated at non-optimal as compared to optimal times of day. In the morning-type group, inhibition performance decreased linearly with time on task only in the evening session, whereas in the morning session it remained more accurate and stable over time. In contrast, inhibition performance in the evening-type group showed a linear vigilance decrement in the morning session, whereas in the evening session the vigilance decrement was attenuated, following a quadratic trend. Our findings imply that the negative effects of time on task in executive control can be prevented by scheduling cognitive tasks at the optimal time of day according to specific circadian profiles of individuals. Therefore, time of day and chronotype influences should be considered in research and clinical studies as well as real-word situations demanding executive control for response inhibition.This work was supported by the Spanish Ministerio de Ciencia e Innovación (Ramón y Cajal programme: RYC-2007-00296 and PLAN NACIONAL de I+D+i: PSI2010-15399) and Junta de Andalucía (SEJ-3054)
- …