1,858 research outputs found
Sex Differences in Semantic Processing: Event-Related Brain Potentials Distinguish between Lower and Higher Order Semantic Analysis during Word Reading
Behavioral studies suggest that women and men differ in the strategic elaboration of verbally encoded information especially in the absence of external task demand. However, measuring such covert processing requires other than behavioral data. The present study used event-related potentials to compare sexes in lower and higher order semantic processing during the passive reading of semantically related and unrelated word pairs. Women and men showed the same early context effect in the P1-N1 transition period. This finding indicates that the initial lexical-semantic access is similar in men and women. In contrast, sexes differed in higher order semantic processing. Women showed an earlier and longer lasting context effect in the N400 accompanied by larger signal strength in temporal networks similarly recruited by men and women. The results suggest that women spontaneously conduct a deeper semantic analysis. This leads to faster processing of related words in the active neural networks as reflected in a shorter stability of the N400 map in women. Taken together, the findings demonstrate that there is a selective sex difference in the controlled semantic analysis during passive word reading that is not reflected in different functional organization but in the depth of processin
Quantum walks can find a marked element on any graph
We solve an open problem by constructing quantum walks that not only detect
but also find marked vertices in a graph. In the case when the marked set
consists of a single vertex, the number of steps of the quantum walk is
quadratically smaller than the classical hitting time of any
reversible random walk on the graph. In the case of multiple marked
elements, the number of steps is given in terms of a related quantity
which we call extended hitting time.
Our approach is new, simpler and more general than previous ones. We
introduce a notion of interpolation between the random walk and the
absorbing walk , whose marked states are absorbing. Then our quantum walk
is simply the quantum analogue of this interpolation. Contrary to previous
approaches, our results remain valid when the random walk is not
state-transitive. We also provide algorithms in the cases when only
approximations or bounds on parameters (the probability of picking a
marked vertex from the stationary distribution) and are
known.Comment: 50 page
k is the Magic Number -- Inferring the Number of Clusters Through Nonparametric Concentration Inequalities
Most convex and nonconvex clustering algorithms come with one crucial
parameter: the in -means. To this day, there is not one generally
accepted way to accurately determine this parameter. Popular methods are simple
yet theoretically unfounded, such as searching for an elbow in the curve of a
given cost measure. In contrast, statistically founded methods often make
strict assumptions over the data distribution or come with their own
optimization scheme for the clustering objective. This limits either the set of
applicable datasets or clustering algorithms. In this paper, we strive to
determine the number of clusters by answering a simple question: given two
clusters, is it likely that they jointly stem from a single distribution? To
this end, we propose a bound on the probability that two clusters originate
from the distribution of the unified cluster, specified only by the sample mean
and variance. Our method is applicable as a simple wrapper to the result of any
clustering method minimizing the objective of -means, which includes
Gaussian mixtures and Spectral Clustering. We focus in our experimental
evaluation on an application for nonconvex clustering and demonstrate the
suitability of our theoretical results. Our \textsc{SpecialK} clustering
algorithm automatically determines the appropriate value for , without
requiring any data transformation or projection, and without assumptions on the
data distribution. Additionally, it is capable to decide that the data consists
of only a single cluster, which many existing algorithms cannot
Visual Observation of a Moving Agent
We address the problem of observing a moving agent. In particular, we propose a system for observing a manipulation process, where a robot hand manipulates an object. A discrete event dynamic systems (DEDS) frame work is developed for the hand/object interaction over time and a stabilizing observer is constructed. Low-level modules are developed for recognizing the events that causes state transitions within the dynamic manipulation system. The work examines closely the possibilities for errors, mistakes and uncertainties in the manipulation system, observer construction process and event identification mechanisms. The system utilizes different tracking techniques in order to observe and recognize the task in an active, adaptive and goal-directed manner
On the Schoenberg Transformations in Data Analysis: Theory and Illustrations
The class of Schoenberg transformations, embedding Euclidean distances into
higher dimensional Euclidean spaces, is presented, and derived from theorems on
positive definite and conditionally negative definite matrices. Original
results on the arc lengths, angles and curvature of the transformations are
proposed, and visualized on artificial data sets by classical multidimensional
scaling. A simple distance-based discriminant algorithm illustrates the theory,
intimately connected to the Gaussian kernels of Machine Learning
Infections with Avian Pathogenic and Fecal Escherichia coli Strains Display Similar Lung Histopathology and Macrophage Apoptosis
The purpose of this study was to compare histopathological changes in the lungs of chickens infected with avian
pathogenic (APEC) and avian fecal (Afecal) Escherichia coli strains, and to analyze how the interaction of the bacteria with
avian macrophages relates to the outcome of the infection. Chickens were infected intratracheally with three APEC strains,
MT78, IMT5155, and UEL17, and one non-pathogenic Afecal strain, IMT5104. The pathogenicity of the strains was assessed by
isolating bacteria from lungs, kidneys, and spleens at 24 h post-infection (p.i.). Lungs were examined for histopathological
changes at 12, 18, and 24 h p.i. Serial lung sections were stained with hematoxylin and eosin (HE), terminal deoxynucleotidyl
dUTP nick end labeling (TUNEL) for detection of apoptotic cells, and an anti-O2 antibody for detection of MT78 and
IMT5155. UEL17 and IMT5104 did not cause systemic infections and the extents of lung colonization were two orders of
magnitude lower than for the septicemic strains MT78 and IMT5155, yet all four strains caused the same extent of
inflammation in the lungs. The inflammation was localized; there were some congested areas next to unaffected areas. Only
the inflamed regions became labeled with anti-O2 antibody. TUNEL labeling revealed the presence of apoptotic cells at 12 h
p.i in the inflamed regions only, and before any necrotic foci could be seen. The TUNEL-positive cells were very likely dying
heterophils, as evidenced by the purulent inflammation. Some of the dying cells observed in avian lungs in situ may also be
macrophages, since all four avian E. coli induced caspase 3/7 activation in monolayers of HD11 avian macrophages. In
summary, both pathogenic and non-pathogenic fecal strains of avian E. coli produce focal infections in the avian lung, and
these are accompanied by inflammation and cell death in the infected areas
Assessment of the incorporation of CNV surveillance into gene panel next-generation sequencing testing for inherited retinal diseases.
BACKGROUND: Diagnostic use of gene panel next-generation sequencing (NGS) techniques is commonplace for individuals with inherited retinal dystrophies (IRDs), a highly genetically heterogeneous group of disorders. However, these techniques have often failed to capture the complete spectrum of genomic variation causing IRD, including CNVs. This study assessed the applicability of introducing CNV surveillance into first-tier diagnostic gene panel NGS services for IRD. METHODS: Three read-depth algorithms were applied to gene panel NGS data sets for 550 referred individuals, and informatics strategies used for quality assurance and CNV filtering. CNV events were confirmed and reported to referring clinicians through an accredited diagnostic laboratory. RESULTS: We confirmed the presence of 33 deletions and 11 duplications, determining these findings to contribute to the confirmed or provisional molecular diagnosis of IRD for 25 individuals. We show that at least 7% of individuals referred for diagnostic testing for IRD have a CNV within genes relevant to their clinical diagnosis, and determined a positive predictive value of 79% for the employed CNV filtering techniques. CONCLUSION: Incorporation of CNV analysis increases diagnostic yield of gene panel NGS diagnostic tests for IRD, increases clarity in diagnostic reporting and expands the spectrum of known disease-causing mutations
Contrasting prefrontal cortex contributions to episodic memory dysfunction in behavioural variant frontotemporal dementia and alzheimer's disease
Recent evidence has questioned the integrity of episodic memory in behavioural variant frontotemporal dementia (bvFTD), where recall performance is impaired to the same extent as in Alzheimer's disease (AD). While these deficits appear to be mediated by divergent patterns of brain atrophy, there is evidence to suggest that certain prefrontal regions are implicated across both patient groups. In this study we sought to further elucidate the dorsolateral (DLPFC) and ventromedial (VMPFC) prefrontal contributions to episodic memory impairment in bvFTD and AD. Performance on episodic memory tasks and neuropsychological measures typically tapping into either DLPFC or VMPFC functions was assessed in 22 bvFTD, 32 AD patients and 35 age- and education-matched controls. Behaviourally, patient groups did not differ on measures of episodic memory recall or DLPFC-mediated executive functions. BvFTD patients were significantly more impaired on measures of VMPFC-mediated executive functions. Composite measures of the recall, DLPFC and VMPFC task scores were covaried against the T1 MRI scans of all participants to identify regions of atrophy correlating with performance on these tasks. Imaging analysis showed that impaired recall performance is associated with divergent patterns of PFC atrophy in bvFTD and AD. Whereas in bvFTD, PFC atrophy covariates for recall encompassed both DLPFC and VMPFC regions, only the DLPFC was implicated in AD. Our results suggest that episodic memory deficits in bvFTD and AD are underpinned by divergent prefrontal mechanisms. Moreover, we argue that these differences are not adequately captured by existing neuropsychological measures
Evaluating Retinal Function in Age-Related Maculopathy with the ERG Photostress Test
PURPOSE. To evaluate the diagnostic potential of the electroretinogram (ERG) photostress test and the focal cone ERG in age-related maculopathy (ARM).
METHODS. The cohort comprised 31 patients with ARM and 27 age-matched control subjects. The ERG photostress test was used to monitor cone adaptation after intense light adaptation. Focal 41- and 5-Hz cone ERGs were recorded monocularly (central 20°) to assess steady state retinal function. Univariate analysis identified electrophysiological parameters that differed between groups, and receiver operating characteristic (ROC) curves were constructed to assess their diagnostic potential. Logistic regression analysis determined the diagnostic potential of a model incorporating several independent predictors of ARM.
RESULTS. The rate of recovery of the ERG photostress test was reduced (recovery was slower) in subjects with ARM. The parameter exhibited good diagnostic potential (P = 0.002, area under ROC curve = 0.74). The implicit times of the 5-Hz (a-wave, P = 0.002; b-wave, P < 0.001) and the 41-Hz (P < 0.001) focal cone ERGs were increased, and the 41-Hz focal cone ERG amplitude (P = 0.003) and focal to full-field amplitude ratio (P = 0.001) were reduced in the ARM group. Logistic regression analysis identified three independent predictors of ARM, including the rate of recovery of the ERG photostress test.
CONCLUSIONS. Early ARM has a marked effect on the kinetics of cone adaptation. The clinical application of the ERG photostress test increases the sensitivity and specificity of a model for the diagnosis of ARM. Improved assessment of the functional integrity of the central retina will facilitate early diagnosis and evaluation of therapeutic interventions
- …