Abstract

We solve an open problem by constructing quantum walks that not only detect but also find marked vertices in a graph. In the case when the marked set MM consists of a single vertex, the number of steps of the quantum walk is quadratically smaller than the classical hitting time HT(P,M)HT(P,M) of any reversible random walk PP on the graph. In the case of multiple marked elements, the number of steps is given in terms of a related quantity HT+(P,M)HT^+(\mathit{P,M}) which we call extended hitting time. Our approach is new, simpler and more general than previous ones. We introduce a notion of interpolation between the random walk PP and the absorbing walk PP', whose marked states are absorbing. Then our quantum walk is simply the quantum analogue of this interpolation. Contrary to previous approaches, our results remain valid when the random walk PP is not state-transitive. We also provide algorithms in the cases when only approximations or bounds on parameters pMp_M (the probability of picking a marked vertex from the stationary distribution) and HT+(P,M)HT^+(\mathit{P,M}) are known.Comment: 50 page

    Similar works

    Full text

    thumbnail-image