28 research outputs found
The Heliospheric Ambipolar Potential Inferred from Sunward-Propagating Halo Electrons
We provide evidence that the sunward-propagating half of the solar wind
electron halo distribution evolves without scattering in the inner heliosphere.
We assume the particles conserve their total energy and magnetic moment, and
perform a "Liouville mapping" on electron pitch angle distributions measured by
the Parker Solar Probe SPAN-E instrument. Namely, we show that the
distributions are consistent with Liouville's theorem if an appropriate
interplanetary potential is chosen. This potential, an outcome of our fitting
method, is compared against the radial profiles of proton bulk flow energy. We
find that the inferred potential is responsible for nearly 100% of the proton
acceleration in the solar wind at heliocentric distances 0.18-0.79 AU. These
observations combine to form a coherent physical picture: the same
interplanetary potential accounts for the acceleration of the solar wind
protons as well as the evolution of the electron halo. In this picture the halo
is formed from a sunward-propagating population that originates somewhere in
the outer heliosphere by a yet-unknown mechanism
Kinetic Theory and Fast Wind Observations of the Electron Strahl
We develop a model for the strahl population in the solar wind -- a narrow,
low-density and high-energy electron beam centered on the magnetic field
direction. Our model is based on the solution of the electron drift-kinetic
equation at heliospheric distances where the plasma density, temperature, and
the magnetic field strength decline as power-laws of the distance along a
magnetic flux tube. Our solution for the strahl depends on a number of
parameters that, in the absence of the analytic solution for the full electron
velocity distribution function (eVDF), cannot be derived from the theory. We
however demonstrate that these parameters can be efficiently found from
matching our solution with observations of the eVDF made by the Wind
satellite's SWE strahl detector. The model is successful at predicting the
angular width (FWHM) of the strahl for the Wind data at 1 AU, in particular by
predicting how this width scales with particle energy and background density.
We find the strahl distribution is largely determined by the local temperature
Knudsen number , which parametrizes solar wind
collisionality. We compute averaged strahl distributions for typical Knudsen
numbers observed in the solar wind, and fit our model to these data. The model
can be matched quite closely to the eVDFs at 1 AU, however, it then
overestimates the strahl amplitude at larger heliocentric distances. This
indicates that our model may be improved through the inclusion of additional
physics, possibly through the introduction of "anomalous diffusion" of the
strahl electrons
Stability Analysis of Core-Strahl Electron Distributions in the Solar Wind
In this work, we analyze the kinetic stability of a solar wind electron
distribution composed of core and strahl subpopulations. The core is modeled by
a drifting Maxwellian distribution, while the strahl is modeled by an analytic
function recently derived in (Horaites et al. 2018) from the collisional
kinetic equation. We perform a numerical linear stability analysis using the
LEOPARD solver (Astfalk & Jenko 2017), which allows for arbitrary gyrotropic
distribution functions in a magnetized plasma. We find that for typical solar
wind conditions, the core-strahl distribution is unstable to the kinetic
Alfv\'en and magnetosonic modes. The maximum growth rates for these
instabilities occur at wavenumbers , at moderately oblique
angles of propagation, thus providing a potential source of kinetic-scale
turbulence. In contrast with previous reports, we however do not find evidence
for a whistler instability directly associated with the electron strahl. This
may be related to the more realistic shape of the electron strahl distribution
function adopted in our work. We therefore suggest that the whistler modes
often invoked to explain anomalous scattering of strahl particles could appear
as a result of nonlinear mode coupling and turbulent cascade originating at
scales .Comment: 7 pages, 7 figure
A global view of Pc3 wave activity in near-Earth space : Results from hybrid-Vlasov simulations
Ultra-low frequency (ULF) waves in the Pc3 range, with periods between 10-45 s, are routinely observed in Earth's dayside magnetosphere. They are thought to originate in the foreshock, which extends upstream of the quasi-parallel bow shock and is populated with shock-reflected particles. The foreshock is permeated with ULF waves generated by ion beam instabilities, most notably the "30-s " waves whose periods match those of the Pc3 waves and which are carried earthward by the solar wind flow. However, the global picture of Pc3 wave activity from the foreshock to the magnetosphere and its response to changing solar wind conditions is still poorly understood. In this study, we investigate the global distribution and properties of Pc3 waves across near-Earth space using global simulations performed with the hybrid-Vlasov model Vlasiator. The simulations enable us to study the waves in their global context, and compare their properties in the foreshock, magnetosheath and dayside magnetosphere, for different sets of upstream solar wind conditions. We find that in all three regions the Pc3 wave power peaks at higher frequencies when the interplanetary magnetic field (IMF) strength is larger, consistent with previous studies. The Pc3 wave power is significantly enhanced in all three regions for higher solar wind Alfven Mach number. As this parameter is known to affect the shock properties but has little impact inside the magnetosphere, this brings further support to the magnetospheric waves originating in the foreshock. Other parameters that are found to influence the foreshock wave power are the solar wind density and the IMF cone angle. Inside the magnetosphere, the wave power distribution depends strongly on the IMF orientation, which controls the foreshock position upstream of the bow shock. The wave power is largest when the angle between the IMF and the Sun-Earth line is smallest, suggesting that wave generation and transmission are most efficient in these conditions.Peer reviewe
Connection Between Foreshock Structures and the Generation of Magnetosheath Jets : Vlasiator Results
Earth’s magnetosheath consists of shocked solar wind plasma that has been compressed and slowed down at the Earth’s bow shock. Magnetosheath jets are pulses of enhanced dynamic pressure in the magnetosheath. Jets have been observed by numerous spacecraft missions, but their origin has remained unconfirmed, though several formation mechanisms have been suggested. In this study, we use a method for automatically identifying and tracking jets as well as foreshock compressive structures (FCSs) in four 2D runs of the global hybrid-Vlasov simulation Vlasiator. We find that up to 75% of magnetosheath jets are caused by FCSs impacting the bow shock. These jets propagate deeper into the magnetosheath than the remaining 25% of jets that are not caused by FCSs. We conduct a visual case study of one jet that was not caused by FCSs and find that the bow shock was not rippled before the formation of the jet.Earth's magnetosheath consists of shocked solar wind plasma that has been compressed and slowed down at the Earth's bow shock. Magnetosheath jets are pulses of enhanced dynamic pressure in the magnetosheath. Jets have been observed by numerous spacecraft missions, but their origin has remained unconfirmed, though several formation mechanisms have been suggested. In this study, we use a method for automatically identifying and tracking jets as well as foreshock compressive structures (FCSs) in four 2D runs of the global hybrid-Vlasov simulation Vlasiator. We find that up to 75% of magnetosheath jets are caused by FCSs impacting the bow shock. These jets propagate deeper into the magnetosheath than the remaining 25% of jets that are not caused by FCSs. We conduct a visual case study of one jet that was not caused by FCSs and find that the bow shock was not rippled before the formation of the jet. Plain Language Summary The space around Earth is filled with plasma, the fourth state of matter. Earth's magnetic field shields our planet from the stream of plasma coming from the Sun, the solar wind. The solar wind plasma is slowed down at the Earth's bow shock, before it flows against and around the Earth's magnetic field in the magnetosheath. Sometimes, pulses of high density or velocity can occur in the magnetosheath that have the potential to disturb the inner regions of near-Earth space where many spacecraft orbit. We call these pulses magnetosheath jets. Magnetosheath jets have been observed by many spacecraft over the past few decades, but how they form has remained unclear. In this study, we use the Vlasiator model to simulate plasma in near-Earth space and investigate the origins of magnetosheath jets. We find that the formation of up to 75% of these jets can be explained by compressive structures in the foreshock, a region populated by intense wave activity extending sunward of the quasi-parallel bow shock, where interplanetary magnetic field lines allow shock-reflected particles to travel back toward the Sun.Peer reviewe
Sub-grid modeling of pitch-angle diffusion for ion-scale waves in hybrid-Vlasov simulations with Cartesian velocity space
Numerical simulations have grown to play a central role in modern sciences over the years. The ever-improving technology of supercomputers has made large and precise models available. However, this accuracy is often limited by the cost of computational resources. Lowering the simulation's spatial resolution in order to conserve resources can lead to key processes being unresolved. We have shown in a previous study how insufficient spatial resolution of the proton cyclotron instability leads to a misrepresentation of ion dynamics in hybrid-Vlasov simulations. This leads to larger than expected temperature anisotropy and loss-cone shaped velocity distribution functions. In this study, we present a sub-grid numerical model to introduce pitch-angle diffusion in a 3D Cartesian velocity space, at a spatial resolution where the relevant wave-particle interactions were previously not correctly resolved. We show that the method is successfully able to isotropize loss-cone shaped velocity distribution functions, and that this method could be applied to simulations in order to save computational resources and still correctly model wave-particle interactions.Peer reviewe
Spatial filtering in a 6D hybrid-Vlasov scheme to alleviate adaptive mesh refinement artifacts : a case study with Vlasiator (versions 5.0, 5.1, and 5.2.1)
Numerical simulation models that are used to investigate the near-Earth space plasma environment require sophisticated methods and algorithms as well as high computational power. Vlasiator 5.0 is a hybrid-Vlasov plasma simulation code that is able to perform 6D (3D in ordinary space and 3D in velocity space) simulations using adaptive mesh refinement (AMR). In this work, we describe a side effect of using AMR in Vlasiator 5.0: the heterologous grid approach creates discontinuities due to the different grid resolution levels. These discontinuities cause spurious oscillations in the electromagnetic fields that alter the global results. We present and test a spatial filtering operator for alleviating this artifact without significantly increasing the computational overhead. We demonstrate the operator's use case in large 6D AMR simulations and evaluate its performance with different implementations.Peer reviewe
Electron Signatures of Reconnection in a Global eVlasiator Simulation
Geospace plasma simulations have progressed toward more realistic descriptions of the solar wind-magnetosphere interaction from magnetohydrodynamic to hybrid ion-kinetic, such as the state-of-the-art Vlasiator model. Despite computational advances, electron scales have been out of reach in a global setting. eVlasiator, a novel Vlasiator submodule, shows for the first time how electromagnetic fields driven by global hybrid-ion kinetics influence electrons, resulting in kinetic signatures. We analyze simulated electron distributions associated with reconnection sites and compare them with Magnetospheric Multiscale (MMS) spacecraft observations. Comparison with MMS shows that key electron features, such as reconnection inflows, heated outflows, flat-top distributions, and bidirectional streaming, are in remarkable agreement. Thus, we show that many reconnection-related features can be reproduced despite strongly truncated electron physics and an ion-scale spatial resolution. Ion-scale dynamics and ion-driven magnetic fields are shown to be significantly responsible for the environment that produces electron dynamics observed by spacecraft in near-Earth plasmas.Peer reviewe