1,249 research outputs found

    Resonant relaxation near a massive black hole: the stellar distribution and gravitational wave sources

    Full text link
    Resonant relaxation (RR) of orbital angular momenta occurs near massive black holes (MBHs) where the stellar orbits are nearly Keplerian and so do not precess significantly. The resulting coherent torques efficiently change the magnitude of the angular momenta and rotate the orbital inclination in all directions. As a result, many of the tightly bound stars very near the MBH are rapidly destroyed by falling into the MBH on low-angular momentum orbits, while the orbits of the remaining stars are efficiently randomized. We solve numerically the Fokker-Planck equation in energy for the steady state distribution of a single mass population with a RR sink term. We find that the steady state current of stars, which sustains the accelerated drainage close to the MBH, can be up to ~10 times larger than that due to non-coherent 2-body relaxation alone. RR mostly affects tightly bound stars, and so it increases only moderately the total tidal disruption rate, which is dominated by stars originating from less bound orbits farther away. We show that the event rate of gravitational wave (GW) emission from inspiraling stars, originating much closer to the MBH, is dominated by RR dynamics. The GW event rate depends on the uncertain efficiency of RR. The efficiency indicated by the few available simulations implies rates ~10 times higher than those predicted by 2-body relaxation, which would improve the prospects of detecting such events by future GW detectors, such as LISA. However, a higher, but still plausible RR efficiency can lead to the drainage of all tightly bound stars and strong suppression of GW events from inspiraling stars. We apply our results to the Galactic MBH, and show that the observed dynamical properties of stars there are consistent with RR.Comment: Accepted to ApJ; Minor revision

    The orbital statistics of stellar inspiral and relaxation near a massive black hole: characterizing gravitational wave sources

    Full text link
    We study the orbital parameters distribution of stars that are scattered into nearly radial orbits and then spiral into a massive black hole (MBH) due to dissipation, in particular by emission of gravitational waves (GW). This is important for GW detection, e.g. by the Laser Interferometer Space Antenna (LISA). Signal identification requires knowledge of the waveforms, which depend on the orbital parameters. We use analytical and Monte Carlo methods to analyze the interplay between GW dissipation and scattering in the presence of a mass sink during the transition from the initial scattering-dominated phase to the final dissipation-dominated phase of the inspiral. Our main results are (1) Stars typically enter the GW-emitting phase with high eccentricities. (2) The GW event rate per galaxy is a few per Gyr for typical central stellar cusps, almost independently of the relaxation time or the MBH mass. (3) For intermediate mass black holes (IBHs) of ~a thousand solar masses such as may exist in dense stellar clusters, the orbits are very eccentric and the inspiral is rapid, so the sources are very short-lived.Comment: ApJ Accepte

    Extreme mass ratio inspiral rates: dependence on the massive black hole mass

    Full text link
    We study the rate at which stars spiral into a massive black hole (MBH) due to the emission of gravitational waves (GWs), as a function of the mass M of the MBH. In the context of our model, it is shown analytically that the rate approximately depends on the MBH mass as M^{-1/4}. Numerical simulations confirm this result, and show that for all MBH masses, the event rate is highest for stellar black holes, followed by white dwarfs, and lowest for neutron stars. The Laser Interferometer Space Antenna (LISA) is expected to see hundreds of these extreme mass ratio inspirals per year. Since the event rate derived here formally diverges as M->0, the model presented here cannot hold for MBHs of masses that are too low, and we discuss what the limitations of the model are.Comment: Accepted to CQG, special LISA issu

    The effect of mass-segregation on gravitational wave sources near massive black holes

    Full text link
    Gravitational waves (GWs) from the inspiral of compact remnants (CRs) into massive black holes (MBHs) will be observable to cosmological distances. While a CR spirals in, 2-body scattering by field stars may cause it to fall into the MBH before reaching a short period orbit that would give an observable signal. As a result, only CRs very near (~0.01 pc) the MBH can spiral in successfully. In a multi-mass stellar population, the heaviest objects sink to the center, where they are more likely to slowly spiral into the MBH without being swallowed prematurely. We study how mass-segregation modifies the stellar distribution and the rate of GW events. We find that the inspiral rate per galaxy for white dwarfs is 30 per Gyr, for neutron stars 6 per Gyr, and for stellar black holes (SBHs) 250 per Gyr. The high rate for SBHs is due to their extremely steep density profile, n_{BH}(r)\propto r^{-2}. The GW detection rate will be dominated by SBHs.Comment: Submitted to ApJ

    The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth

    Full text link
    One of the most interesting sources of gravitational waves (GWs) for LISA is the inspiral of compact objects on to a massive black hole (MBH), commonly referred to as an "extreme-mass ratio inspiral" (EMRI). The small object, typically a stellar black hole (bh), emits significant amounts of GW along each orbit in the detector bandwidth. The slowly, adiabatic inspiral of these sources will allow us to map space-time around MBHs in detail, as well as to test our current conception of gravitation in the strong regime. The event rate of this kind of source has been addressed many times in the literature and the numbers reported fluctuate by orders of magnitude. On the other hand, recent observations of the Galactic center revealed a dearth of giant stars inside the inner parsec relative to the numbers theoretically expected for a fully relaxed stellar cusp. The possibility of unrelaxed nuclei (or, equivalently, with no or only a very shallow cusp) adds substantial uncertainty to the estimates. Having this timely question in mind, we run a significant number of direct-summation N−N-body simulations with up to half a million particles to calibrate a much faster orbit-averaged Fokker-Planck code. We then investigate the regime of strong mass segregation (SMS) for models with two different stellar mass components. We show that, under quite generic initial conditions, the time required for the growth of a relaxed, mass segregated stellar cusp is shorter than a Hubble time for MBHs with M∙â‰Č5×106M⊙M_\bullet \lesssim 5 \times 10^6 M_\odot (i.e. nuclei in the range of LISA). SMS has a significant impact boosting the EMRI rates by a factor of ∌10\sim 10 for our fiducial models of Milky Way type galactic nuclei.Comment: Accepted by CQG, minor changes, a bit expande

    The role of psycho-education in improving outcome at a general hospital psychiatry clinic in Uganda

    Get PDF
    Objective: While psychoeducation has been shown to positively affect outcomes in psychiatric disorders, its utility has been little studied in developing countries. The current study sought to examine the role of psychoeducation at a general psychiatric outpatient clinic in Kampala, Uganda in improving clinic attendance, treatment adherence, and clinical outcomes. Method: A prospective casecontrol study using a quasi-experimental design was conducted in 117 patients suffering various psychiatric disorders. Participants were recruited for two months and then followed for a further three months after recruitment ended. Participants in the intervention group received formalized psychoeducation sessions at each clinic visit in addition to the usual psychiatric evaluation and care. Participants in the control group received the usual clinical care. Measured outcomes were knowledge of mental illness, compliance with medications and follow-up, and Clinical Global Impression (CGI). Results: The groups did not differ with respect to sociodemographiccharacteristics or attendance at scheduled follow-up visits. Both groups significantly improved on the CGI, but with no significant difference between the groups. However, the intervention group was more likely to adhere to medication, and their knowledge of mental illness was significantly higher at follow-up. Conclusion: These data suggest that psychoeducation is a beneficial mental health intervention in a developing country that may increase compliance with medication and result in greater knowledge of mental illness. However, other factors such as distance from a centralized clinic or cost of treatment may impact outcomes, including attendance at scheduled follow-up visits.Keywords: Low and middle income countries; Outpatient treatment; Psychosocial interventions; Transcultural Psychiatry; Africa;  Psychoeducatio

    Comparison of LISA and Atom Interferometry for Gravitational Wave Astronomy in Space

    Full text link
    One of the atom interferometer gravitational wave missions proposed by Dimopoulos et al.1 in 2008 was called AGIS-Sat. 2. It had a suggested gravitational wave sensitivity set by the atom state detection shot noise level that started at 1 mHz, was comparable to LISA sensitivity from 1 to about 20 mHz, and had better sensitivity from 20 to 500 mHz. The separation between the spacecraft was 1,000 km, with atom interferometers 200 m long and shades from sunlight used at each end. A careful analysis of many error sources was included, but requirements on the time-stability of both the laser wavefront aberrations and the atom temperatures in the atom clouds were not investigated. After including these considerations, the laser wavefront aberration stability requirement to meet the quoted sensitivity level is about 1\times10-8 wavelengths, and is far tighter than for LISA. Also, the temperature fluctuations between atom clouds have to be less than 1 pK. An alternate atom interferometer GW mission in Earth orbit called AGIS-LEO with 30 km satellite separation has been suggested recently. The reduction of wavefront aberration noise by sending the laser beam through a high-finesse mode-scrubbing optical cavity is discussed briefly, but the requirements on such a cavity are not given. Unfortunately, such an Earth-orbiting mission seems to be considerably more difficult to design than a non-geocentric mission and does not appear to have comparably attractive scientific goals.Comment: Submitted to Proc. 46th Rencontres de Moriond: Gravitational Waves and Experimental Gravity, March 20 - 27, 2011, La Thuile, Ital

    Stellar Dynamics and Black Holes

    Full text link
    Chandrasekhar's most important contribution to stellar dynamics was the concept of dynamical friction. I briefly review that work, then discuss some implications of Chandrasekhar's theory of gravitational encounters for motion in galactic nuclei.Comment: Talk presented at the "Chandrasekhar Centenary Conference" (2010

    The origin of variability of the intermediate-mass black-hole ULX system HLX-1 in ESO 243-49

    Full text link
    The ultra-luminous intermediate-mass black-hole system HLX-1 in the ESO 243-49 galaxy exhibits variability with a possible recurrence time of a few hundred days. Finding the origin of this variability would constrain the still largely unknown properties of this extraordinary object. Since it exhibits an intensity-hardness behavior characteristic of black-hole X-ray transients, we have analyzed the variability of HLX-1 in the framework of the disk instability model that explains outbursts of such systems. We find that the long-term variability of HLX-1 is unlikely to be explained by a model in which outbursts are triggered by thermal-viscous instabilities in an accretion disc. Possible alternatives include the instability in a radiation-pressure dominated disk but we argue that a more likely explanation is a modulated mass-transfer due to tidal stripping of a star on an eccentric orbit around the intermediate-mass black hole. We consider an evolutionary scenario leading to the creation of such a system and estimate the probability of its observation. We conclude, using a simplified dynamical model of the post-collapse cluster, that no more than 1/100 to 1/10 of Mbh < 10^4 Msun IMBHs - formed by run-away stellar mergers in the dense collapsed cores of young clusters - could have a few times 1 Msun Main-Sequence star evolve to an AGB on an orbit eccentric enough for mass transfer at periapse, while avoiding collisional destruction or being scattered into the IMBH by 2-body encounters. The finite but low probability of this configuration is consistent with the uniqueness of HLX-1. We note, however, that the actual response of a standard accretion disk to bursts of mass transfer may be too slow to explain the observations unless the orbit is close to parabolic (and hence even rarer) and/or additional heating, presumably linked to the highly time-dependent gravitational potential, are invoked.Comment: 8 pages, 2 figures. Additional figure, extended discussion. To be published in ApJ, June 10, 2011, v734 -
    • 

    corecore