1,840 research outputs found

    The heritability of chimpanzee and human brain asymmetry

    Get PDF
    Human brains are markedly asymmetric in structure and lateralized in function, which suggests a relationship between these two properties. The brains of other closely related primates, such as chimpanzees, show similar patterns of asymmetry, but to a lesser degree, indicating an increase in anatomical and functional asymmetry during hominin evolution. We analysed the heritability of cerebral asymmetry in chimpanzees and humans using classic morphometrics, geometric morphometrics, and quantitative genetic techniques. In our analyses, we separated directional asymmetry and fluctuating asymmetry (FA), which is indicative of environmental influences during development. We show that directional patterns of asymmetry, those that are consistently present in most individuals in a population, do not have significant heritability when measured through simple linear metrics, but they have marginally significant heritability in humans when assessed through three-dimensional configurations of landmarks that reflect variation in the size, position, and orientation of different cortical regions with respect to each other. Furthermore, genetic correlations between left and right hemispheres are substantially lower in humans than in chimpanzees, which points to a relatively stronger environmental influence on left–right differences in humans. We also show that the level of FA has significant heritability in both species in some regions of the cerebral cortex. This suggests that brain responsiveness to environmental influences, which may reflect neural plasticity, has genetic bases in both species. These results have implications for the evolvability of brain asymmetry and plasticity among humans and our close relatives

    Modular structure facilitates mosaic evolution of the brain in chimpanzees and humans

    Get PDF
    Different brain components can evolve in a coordinated manner or they can show divergent evolutionary trajectories according to a mosaic pattern of variation. Understanding the relationship between these brain evolutionary patterns, which are not mutually exclusive, can be informed by the examination of intraspecific variation. Our study evaluates patterns of brain anatomical covariation in chimpanzees and humans to infer their influence on brain evolution in the hominin clade. We show that chimpanzee and human brains have a modular structure that may have facilitated mosaic evolution from their last common ancestor. Spatially adjacent regions covary with one another to the strongest degree and separated regions are more independent from each other, which might be related to a predominance of local association connectivity. Despite the undoubted importance of developmental and functional factors in determining brain morphology, we find that these constraints are subordinate to the primary effect of local spatial interactions

    Relaxed genetic control of cortical organization in human brains compared with chimpanzees

    Get PDF
    The study of hominin brain evolution has focused largely on the neocortical expansion and reorganization undergone by humans as inferred from the endocranial fossil record. Comparisons of modern human brains with those of chimpanzees provide an additional line of evidence to define key neural traits that have emerged in human evolution and that underlie our unique behavioral specializations. In an attempt to identify fundamental developmental differences, we have estimated the genetic bases of brain size and cortical organization in chimpanzees and humans by studying phenotypic similarities between individuals with known kinship relationships. We show that, although heritability for brain size and cortical organization is high in chimpanzees, cerebral cortical anatomy is substantially less genetically heritable than brain size in humans, indicating greater plasticity and increased environmental influence on neurodevelopment in our species. This relaxed genetic control on cortical organization is especially marked in association areas and likely is related to underlying microstructural changes in neural circuitry. A major result of increased plasticity is that the development of neural circuits that underlie behavior is shaped by the environmental, social, and cultural context more intensively in humans than in other primate species, thus providing an anatomical basis for behavioral and cognitive evolution

    Injury Risk Estimation Expertise Assessing the ACL Injury Risk Estimation Quiz

    Get PDF
    Background: Available methods for screening anterior cruciate ligament (ACL) injury risk are effective but limited in application as they generally rely on expensive and time-consuming biomechanical movement analysis. A potential efficient alternative to biomechanical screening is skilled movement analysis via visual inspection (ie, having experts estimate injury risk factors based on observations of athletes’ movements). Purpose: To develop a brief, valid psychometric assessment of ACL injury risk factor estimation skill: the ACL Injury Risk Estimation Quiz (ACL-IQ). Study Design: Cohort study (diagnosis); Level of evidence, 3. Methods: A total of 660 individuals participated in various stages of the study, including athletes, physicians, physical therapists, athletic trainers, exercise science researchers/students, and members of the general public in the United States. The ACL-IQ was fully computerized and made available online (www.ACL-IQ.org). Item sampling/reduction, reliability analysis, cross-validation, and convergent/discriminant validity analysis were conducted to optimize the efficiency and validity of the assessment. Results: Psychometric optimization techniques identified a short (mean time, 2 min 24 s), robust, 5-item assessment with high reliability (test-retest: r = 0.90) and consistent discriminability (average difference of exercise science professionals vs general population: Cohen d = 1.98). Exercise science professionals and general population individuals scored 74% and 53% correct, respectively. Convergent and discriminant validity was demonstrated. Scores on the ACL-IQ were most associated with ACL knowledge and various cue utilities and were least associated with domain-general spatial/decision-making ability, personality, or other demographic variables. Overall, 23% of the total sample (40% exercise science professionals; 6% general population) performed better than or equal to the ACL nomogram. Conclusion: This study presents the results of a systematic approach to assess individual differences in ACL injury risk factor estimation skill; the assessment approach is efficient (ie, it can be completed in\3 min) and psychometrically robust. The results provide evidence that some individuals have the ability to visually estimate ACL injury risk factors more accurately than other instrument-based ACL risk estimation methods (ie, ACL nomogram). The ACL-IQ provides the foundation for assessing the efficacy of observational ACL injury risk factor assessment (ie, does simple skilled visual inspection reduce ACL injuries?). It also provides a representative task environment that can be used to increase our understanding of the perceptual-cognitive mechanisms underlying observational movement analysis and to improve injury risk assessment performance

    What drives the evolution of gas kinematics in star-forming galaxies?

    Get PDF
    One important result from recent large integral field spectrograph (IFS) surveys is that the intrinsic velocity dispersion of galaxies traced by star-forming gas increases with redshift. Massive, rotation-dominated discs are already in place at z ∼ 2, but they are dynamically hotter than spiral galaxies in the local Universe. Although several plausible mechanisms for this elevated velocity dispersion (e.g. star formation feedback, elevated gas supply, or more frequent galaxy interactions) have been proposed, the fundamental driver of the velocity dispersion enhancement at high redshift remains unclear. We investigate the origin of this kinematic evolution using a suite of cosmological simulations from the FIRE (Feedback In Realistic Environments) project. Although IFS surveys generally cover a wider range of stellar masses than in these simulations, the simulated galaxies show trends between intrinsic velocity dispersion (σ intr ), SFR, and z in agreement with observations. In both observations and simulations, galaxies on the star-forming main sequence have median σ intr values that increase from z ∼ 0 to z ∼ 1–1.5, but this increasing trend is less evident at higher redshift. In the FIRE simulations, σ intr can vary significantly on time-scales of 100 Myr. These variations closely mirror the time evolution of the SFR and gas inflow rate (M gas ). By cross-correlating pairs of σ intr, M gas, and SFR, we show that increased gas inflow leads to subsequent enhanced star formation, and enhancements in σ intr tend to temporally coincide with increases in M gas and SFR

    Molecular basis of structure and function of the microvillus membrane of intestinal epithelial cells

    Get PDF
    Correlation of molecular structure with biochemical functions of the plasma membrane of the microvilli of intestinal epithelial cells has been investigated by biochemical and electron microscopic procedures. Repeating particles, measuring approximately 60 &#197;in diameter, were found on the surface of the microvilli membrane which had been isolated or purified from rabbit intestinal epithelial cells and negatively stained with phosphotungstic acid. These particles were proved to be inherent components of the microvillus membrane, attached to the outer surface of its trilaminar structure, and were designated as the elementary particles of the microvilli of intestinal epithelial cells. Biochemical and electron microscopic identification of these elementary particles has been carried out by isolation of the elementary particles with papain from the isolated microvillus membrane, followed by purification of the particles by chromatographies on DEAE-cellulose and Sephadex columns. The partially purified particles containing invertase and leucine aminopeptidase are similar in size and structure to those of the elementary particles in the microvillus membrane. Evidence indicates that each of the elementary particles coincide with or include an enzyme molecule such as disaccharidase or peptidase, which carry out the terminal hydrolytic digestion of carbohydrates and proteins, respectively, on the surface of the microvillus membrane. Magnesium ionactivated adenosine triphosphatase and alkaline phosphatase cannot be solubilized with papain but remains in the smooth-surface membrane after the elementary particles have been removed. Cytochemical electron microscopic observation revealed that the active site of magnesium ion-activated adenosine triphosphatase is localized predominantly in the inner surface of the trilaminar structure of the microvillus membrane.</p

    Gas accretion as the origin of chemical abundance gradients in distant galaxies

    Full text link
    It has recently been suggested that galaxies in the early Universe can grow through the accretion of cold gas, and that this may have been the main driver of star formation and stellar mass growth. Because the cold gas is essentially primordial, it has a very low abundance of elements heavier than helium (metallicity). As it is funneled to the centre of a galaxy, it will lead the central gas having an overall lower metallicity than gas further from the centre, because the gas further out has been enriched by supernovae and stellar winds, and not diluted by the primordial gas. Here we report chemical abundances across three rotationally-supported star-forming galaxies at z~3, only 2 Gyr after the Big Bang. We find an 'inverse' gradient, with the central, star forming regions having a lower metallicity than less active ones, opposite to what is seen in local galaxies. We conclude that the central gas has been diluted by the accretion of primordial gas, as predicted by 'cold flow' models.Comment: To Appear in Nature Oct 14, 2010; Supplementary Information included her

    Cortical Representation of Lateralized Grasping in Chimpanzees (Pan troglodytes): A Combined MRI and PET Study

    Get PDF
    Functional imaging studies in humans have localized the motor-hand region to a neuroanatomical landmark call the KNOB within the precentral gyrus. It has also been reported that the KNOB is larger in the hemisphere contralateral to an individual's preferred hand, and therefore may represent the neural substrate for handedness. The KNOB has also been neuronatomically described in chimpanzees and other great apes and is similarly associated with handedness. However, whether the chimpanzee KNOB represents the hand region is unclear from the extant literature. Here, we used PET to quantify neural metabolic activity in chimpanzees when engaged in unilateral reach-and-grasping responses and found significantly lateralized activation of the KNOB region in the hemisphere contralateral to the hand used by the chimpanzees. We subsequently constructed a probabilistic map of the KNOB region in chimpanzees in order to assess the overlap in consistency in the anatomical landmarks of the KNOB with the functional maps generated from the PET analysis. We found significant overlap in the anatomical and functional voxels comprising the KNOB region, suggesting that the KNOB does correspond to the hand region in chimpanzees. Lastly, from the probabilistic maps, we compared right- and left-handed chimpanzees on lateralization in grey and white matter within the KNOB region and found that asymmetries in white matter of the KNOB region were larger in the hemisphere contralateral to the preferred hand. These results suggest that neuroanatomical asymmetries in the KNOB likely reflect changes in connectivity in primary motor cortex that are experience dependent in chimpanzees and possibly humans

    Optimising antimicrobial stewardship interventions in English primary care: a behavioural analysis of qualitative and intervention studies

    Get PDF
    Objective: While various interventions have helped reduce antibiotic prescribing, further gains can be made. This study aimed to identify ways to optimise antimicrobial stewardship (AMS) interventions by assessing the extent to which important influences on antibiotic prescribing are addressed (or not) by behavioural content of AMS interventions. Settings: English primary care. Interventions: AMS interventions targeting healthcare professionals’ antibiotic prescribing for respiratory tract infections. Methods: We conducted two rapid reviews. The first included qualitative studies with healthcare professionals on self-reported influences on antibiotic prescribing. The influences were inductively coded and categorised using the Theoretical Domains Framework (TDF). Prespecified criteria were used to identify key TDF domains. The second review included studies of AMS interventions. Data on effectiveness were extracted. Components of effective interventions were extracted and coded using the TDF, Behaviour Change Wheel and Behaviour Change Techniques (BCTs) taxonomy. Using prespecified matrices, we assessed the extent to which BCTs and intervention functions addressed the key TDF domains of influences on prescribing. Results: We identified 13 qualitative studies, 41 types of influences on antibiotic prescribing and 6 key TDF domains of influences: ‘beliefs about consequences’, ‘social influences’, ‘skills’, ‘environmental context and resources’, ‘intentions’ and ‘emotions’. We identified 17 research-tested AMS interventions; nine of them effective and four nationally implemented. Interventions addressed all six key TDF domains of influences. Four of these six key TDF domains were addressed by 50%–67% BCTs that were theoretically congruent with these domains, whereas TDF domain 'skills' was addressed by 24% of congruent BCTs and 'emotions' by none. Conclusions: Further improvement of antibiotic prescribing could be facilitated by: (1) national implementation of effective research-tested AMS interventions (eg, electronic decision support tools, training in interactive use of leaflets, point-of-care testing); (2) targeting important, less-addressed TDF domains (eg, 'skills', 'emotions'); (3) using relevant, under-used BCTs to target key TDF domains (eg, ‘forming/reversing habits’, ‘reducing negative emotions’, ‘social support’). These could be incorporated into existing, or developed as new, AMS interventions

    Optimising interventions for catheter-associated urinary tract infections (Cauti) in primary, secondary and care home settings

    Get PDF
    Catheter-associated urinary tract infections (CAUTI) are common yet preventable. Healthcare professional behaviours, such as reducing unnecessary catheter use, are key for preventing CAUTI. Previous research has focused on identifying gaps in the national response to CAUTI in multiple settings in England. This study aimed to identify how national interventions could be optimised. We conducted a multi-method study comprising: a rapid review of research on interventions to reduce CAUTI; a behavioural analysis of effective research interventions compared to national interventions; and a stakeholder focus group and survey to identify the most promising options for optimising interventions. We identified 37 effective research interventions, mostly conducted in United States secondary care. A behavioural analysis of these interventions identified 39 intervention components as possible ways to optimise national interventions. Seven intervention components were prioritised by stakeholders. These included: checklists for discharge/admission to wards; information for patients and relatives about the pros/cons of catheters; setting and profession specific guidelines; standardised nationwide computer-based documentation; promotion of alternatives to catheter use; CAUTI champions; and bladder scanners. By combining research evidence, behavioural analysis and stakeholder feedback, we identified how national interventions to reduce CAUTI could be improved. The seven prioritised components should be considered for future implementation
    • …
    corecore