5,720 research outputs found
History of nutrient inputs to the northeastern United States, 1930–2000
Humans have dramatically altered nutrient cycles at local to global scales. We examined changes in anthropogenic nutrient inputs to the northeastern United States (NE) from 1930 to 2000. We created a comprehensive time series of anthropogenic N and P inputs to 437 counties in the NE at 5 year intervals. Inputs included atmospheric N deposition, biological N2 fixation, fertilizer, detergent P, livestock feed, and human food. Exports included exports of feed and food and volatilization of ammonia. N inputs to the NE increased throughout the study period, primarily due to increases in atmospheric deposition and fertilizer. P inputs increased until 1970 and then declined due to decreased fertilizer and detergent inputs. Livestock consistently consumed the majority of nutrient inputs over time and space. The area of crop agriculture declined during the study period but consumed more nutrients as fertilizer. We found that stoichiometry (N:P) of inputs and absolute amounts of N matched nutritional needs (livestock, humans, crops) when atmospheric components (N deposition, N2 fixation) were not included. Differences between N and P led to major changes in N:P stoichiometry over time, consistent with global trends. N:P decreased from 1930 to 1970 due to increased inputs of P, and increased from 1970 to 2000 due to increased N deposition and fertilizer and decreases in P fertilizer and detergent use. We found that nutrient use is a dynamic product of social, economic, political, and environmental interactions. Therefore, future nutrient management must take into account these factors to design successful and effective nutrient reduction measures
The MeV spectra of gamma-ray bursts measured with COMPTEL
The past decade has produced a wealth of observational data on the energy spectra of prompt emission from gamma-ray bursts. Most of the data cover the energy range from a few to several hundred keV. One set of higher energy
observations comes from the Imaging Compton Telescope COMPTEL on the Compton Observatory, which measured in the energy range from 0.75 to 30MeV. We analyzed the full 9.2 years COMPTEL data to reveal the significant detection of 44 gamma-ray bursts. We present preliminary results obtained in the process of preparing a final catalog of the spectral analysis of these events. In addition, we compare
the COMPTEL spectra to simultaneous BATSE measurements for purposes of cross-calibration
The MeV spectra of gamma-ray bursts measured with COMPTEL
The past decade has produced a wealth of observational data on the energy spectra of prompt emission from gamma-ray bursts. Most of the data cover the energy range from a few to several hundred keV. One set of higher energy
observations comes from the Imaging Compton Telescope COMPTEL on the Compton Observatory, which measured in the energy range from 0.75 to 30MeV. We analyzed the full 9.2 years COMPTEL data to reveal the significant detection of 44 gamma-ray bursts. We present preliminary results obtained in the process of preparing a final catalog of the spectral analysis of these events. In addition, we compare
the COMPTEL spectra to simultaneous BATSE measurements for purposes of cross-calibration
The “Little White Lie:” An Exercise to Explore the Relevance of Diversity Curriculum
Compared to the previous decade, fewer incoming college students see racism as a major problem in America (Sax et al. 2001). While there are many complex variables that contribute to persistent racism, we argue that forms of both overt and covert racism are in part perpetuated by our language. This paper offers a concrete example of how educators in business schools in Jesuit institutions of higher education can infuse justice/social responsibility into our curricula (Spitzer 2010). The classroom activity, as described, is designed for a traditional face-to-face undergraduate classroom. Grounded in the principles of Ignatian pedagogy, this exercise provides a practical tool to contextualize the power of language of today’s Millennial college student, surfacing the connotations of power and privilege, while supporting student experience, reflection, and action
Nonequilibrium stationary states with ratchet effect
An ensemble of particles in thermal equilibrium at temperature , modeled
by Nos\`e-Hoover dynamics, moves on a triangular lattice of oriented semi-disk
elastic scatterers. Despite the scatterer asymmetry a directed transport is
clearly ruled out by the second law of thermodynamics. Introduction of a
polarized zero mean monochromatic field creates a directed stationary flow with
nontrivial dependence on temperature and field parameters. We give a
theoretical estimate of directed current induced by a microwave field in an
antidot superlattice in semiconductor heterostructures.Comment: 4 pages, 5 figures (small changes added
Comment on the calculation of forces for multibody interatomic potentials
The system of particles interacting via multibody interatomic potential of
general form is considered. Possible variants of partition of the total force
acting on a single particle into pair contributions are discussed. Two
definitions for the force acting between a pair of particles are compared. The
forces coincide only if the particles interact via pair or embedded-atom
potentials. However in literature both definitions are used in order to
determine Cauchy stress tensor. A simplest example of the linear pure shear of
perfect square lattice is analyzed. It is shown that, Hardy's definition for
the stress tensor gives different results depending on the radius of
localization function. The differences strongly depend on the way of the force
definition.Comment: 9 pages, 2 figure
Configurational temperature control for atomic and molecular systems
A new configurational temperature thermostat suitable for molecules with holonomic constraints is derived. This thermostat has a simple set of motion equations, can generate the canonical ensemble in both position and momentum space, acts homogeneously through the spatial
coordinates, and does not intrinsically violate the constraints. Our new configurational thermostat is
closely related to the kinetic temperature Nosé-Hoover thermostat with feedback coupled to the position variables via a term proportional to the net molecular force. We validate the thermostat by comparing equilibrium static and dynamic quantities for a fluid of n-decane molecules under
configurational and kinetic temperature control. Practical aspects concerning the implementation of the new thermostat in a molecular dynamics code and the potential applications are discussed
- …