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[1] Humans have dramatically altered nutrient cycles at local to global scales. We
examined changes in anthropogenic nutrient inputs to the northeastern United States (NE)
from 1930 to 2000. We created a comprehensive time series of anthropogenic N and P
inputs to 437 counties in the NE at 5 year intervals. Inputs included atmospheric N
deposition, biological N2 fixation, fertilizer, detergent P, livestock feed, and human food.
Exports included exports of feed and food and volatilization of ammonia. N inputs to the NE
increased throughout the study period, primarily due to increases in atmospheric deposition
and fertilizer. P inputs increased until 1970 and then declined due to decreased fertilizer and
detergent inputs. Livestock consistently consumed the majority of nutrient inputs over time
and space. The area of crop agriculture declined during the study period but consumed more
nutrients as fertilizer. We found that stoichiometry (N:P) of inputs and absolute amounts of
N matched nutritional needs (livestock, humans, crops) when atmospheric components
(N deposition, N2 fixation) were not included. Differences between N and P led to major
changes in N:P stoichiometry over time, consistent with global trends. N:P decreased from
1930 to 1970 due to increased inputs of P, and increased from 1970 to 2000 due to increased
N deposition and fertilizer and decreases in P fertilizer and detergent use. We found that
nutrient use is a dynamic product of social, economic, political, and environmental
interactions. Therefore, future nutrient management must take into account these factors to
design successful and effective nutrient reduction measures.

Citation: Hale, R. L., J. H. Hoover, W. M. Wollheim, and C. J. Vörösmarty (2013), History of nutrient inputs to the
northeastern United States, 1930–2000, Global Biogeochem. Cycles, 27, 578–591, doi:10.1002/gbc.20049.

1. Introduction

[2] Globally, humans have increased the availability of the
often-limiting nutrients nitrogen (N) and phosphorus (P)
[Vitousek et al., 1997b; Falkowski et al., 2000; Galloway
et al., 2008]. Increased nutrient availability has had many pos-
itive effects on human well-being globally, primarily by
increasing crop yields and therefore human food supply.
However, it has also led to ecologically damaging and eco-
nomically costly eutrophication problems [Carpenter et al.,
1998]. Humans have changed N and P cycles differently;
whereas global N availability has doubled, P availability has
quadrupled since the preindustrial age [Falkowski et al.,
2000]. At the same time, regulatory controls for P in the
United States have typically been more widespread and more
successful than those for N (e.g., P detergent bans [Litke,

1999]; P turf fertilizer bans [Lehman et al., 2009]). However,
human nutrient use does not respond to regulations alone.
Although there have been no regulations directly controlling
the use of agricultural fertilizer, inputs of fertilizer P have de-
clined in the United States since 1980 [Alexander and Smith,
1990]. Global nutrient cycles are frequently depicted as sys-
tems spiraling out of control [Vitousek et al., 1997a; Childers
et al., 2011]; yet declines in P inputs from agricultural fertil-
izer, in the absence of direct regulation, suggest that anthropo-
genic nutrient cycles may respond to a diversity of drivers and
thus may be subject to additional socio-ecological feedback
(in the sense of Liu et al. [2007]).
[3] Because of the long-term legacy effects of human envi-

ronmental management [McGuire et al., 2001; Pastore et al.,
2010; Bain et al., 2012;MacDonald et al., 2012], a historical
approach is critical for understanding how absolute quantities
and geographic patterns of nutrient use emerge over time
[Barles, 2007; Billen et al., 2007] and provides a context
for understanding the state of modern socio-ecosystems
[Foster et al., 2003; Billen et al., 2007]. Importantly,
Barles [2007] notes that changes in human-nutrient systems
are “not necessarily. . .continuous, systematic and deliber-
ate.” Human nutrient use is intricately tied to how we pro-
duce food and how we deal with waste [Jordan and Weller,
1996; Barles, 2007; Billen et al., 2007; Cordell et al.,
2009]. It is therefore also tied to the technologies that society
has available for these two activities (e.g., fertilizer, water
treatment), human perceptions regarding waste [e.g.,
Barles, 2007], and the political and economic conditions
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within which these activities take place (e.g., U.S. food
policy, global grain markets).
[4] Historical approaches are also useful for understanding

ecological consequences of nutrient inputs and the develop-
ment of scientific knowledge regarding the pollution resulting
from those inputs [Howarth and Marino, 2006]. Recent re-
search suggests that increases in anthropogenic N inputs rela-
tive to P are a global phenomenon [Peñuelas et al., 2012] that
may be causing shifts in nutrient limitation as well as species
composition in both fresh [Elser et al., 2009] and marine wa-
ters [Justic et al., 1995; Turner et al., 2003; Billen et al., 2007;
Grizzetti et al., 2012]. Understanding the mechanisms under-
lying historic and ongoing changes in nutrient inputs is critical
to designing effective solutions to current and future nutrient
pollution [Foster et al., 2003] and improving the current wa-
tershed management emphasis on problem remediation rather
than prevention [Vörösmarty et al., 2010].
[5] Nutrient use by humans is variable not only temporally

but also spatially. Differences in the absolute quantities,
drivers, and stoichiometry of nutrient use vary across re-
gional and global scales [Jordan and Weller, 1996; Boyer
et al., 2002; Vitousek et al., 2009] as a result of differences
in land use [Jordan and Weller, 1996; Boyer et al., 2002]
and economic development [Vitousek et al., 2009]. Many re-
cent assessments of anthropogenic nutrient inputs to the
United States have focused on areas dominated by row-crop
agriculture, especially the Mississippi River basin [David
and Gentry, 2000; Donner et al., 2004; Alexander et al.,
2008; Broussard and Turner, 2009]. Relatively little research
has focused on the historical nutrient patterns of the north-
eastern United States (NE, Figure 1) from 1930 to 2000.
The NE is one of the most densely populated regions of the

U.S., and over the twentieth century, it experienced a signif-
icant reduction in cropland concurrent with a near doubling
of the human population. However, the NE is also a major
meat-producing region for the U.S., and so livestock agricul-
ture is a major driver of nutrient cycling [Boyer et al., 2002].
Furthermore, the NE has vast areas of forested land that is
subject to high rates of atmospheric N deposition [Boyer
et al., 2002].
[6] The objectives of this paper are to (i) describe changes

in the geographic patterns of nutrient inputs to the NE region
over a near-century timeframe (1930–2000), (ii) assess how
nutrient inputs have responded to changing demography,
land use, technology, and legislation during this period, and
(iii) identify potential ecological consequences of changes
in nutrient inputs over time.

2. Methods

[7] We used a mass balance approach [Green et al., 2004]
to estimate net anthropogenic inputs of N and P to the NE
during the twentieth century. We created nutrient budgets
for the 437 NE counties at 5 year time steps from 1930 to
2000. For the present study, we measured the net inputs of
nutrients to or from each county as fertilizer, atmospheric
deposition (N only), biological N2 fixation, livestock feed,
human food, and detergent phosphates. To avoid double
counting, the total net inputs of N and P took into account
transfers within the county (e.g., crops consumed as human
food). Where local production of food and feed exceeded lo-
cal consumption, the balance was negative and was defined
as a net export from the county. Exports included only excess
agricultural production and ammonia volatilization. We use
“net inputs” to refer to inputs associated with a single source
of nutrients and “total net inputs” to refer to inputs from all
sources. We made the simplifying assumption that P inputs
from geologic weathering were unchanging and did not in-
clude them here. Manure and human sewage were calculated
but were not considered additional inputs as they result from
internal recycling of nutrients from fertilizer, food, and feed
imports. Our budgets estimated the net inputs or exports of
nutrients to or from each county and to watersheds, but we
did not track nutrient transport or processing in receiving wa-
ters downstream. We also did not account for management
strategies, such as riparian buffers or wastewater treatment,
which may reduce the pathways and fluxes of nutrients in
aquatic ecosystems.

2.1. Atmospheric Deposition

[8] Data on N deposition rates are limited in time and
space. To describe temporal changes in atmospheric deposi-
tion, we estimated atmospheric deposition of N to the whole
region using relationships between gaseous N emissions
(as nitrogen oxides [NOx], and ammonia [NH3]) and N
deposition. State-level NOx emissions data for 1930 to
2000 came from Gschwandtner et al. [1985] and the
Environmental Protection Agency (EPA) National Emissions
Inventory (NEI, http://www.epa.gov/ttn/chief/trends/index.
html). Although state-level NH3 emissions were available for
2000 from the EPA, they were not available for early parts
of the century. We therefore calculated historic NH3 emissions
using manure and fertilizer data from our data set (see below
for manure and fertilizer methods) and NH3 volatilization
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Figure 1. Study area includes the 13 northeastern states and
437 counties.
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coefficients from Battye et al. [1994] and Boyer et al. [2002].
Our calculated NH3 emissions were well correlated with EPA
emissions data for the year 2000 (r=0.998, p< 0.001). We
obtained atmospheric deposition rates for the year 2000 from
the National Atmospheric Deposition Network (NADP,
http://nadp.sws.uiuc.edu/). The NADP collects data on annual
wet deposition rates for nitrate (NO3

�) and ammonium
(NH4

+) from 41 sites throughout the NE. We estimated total
deposition (wet + dry) by assuming that dry deposition of
NH4

+ is 18% of wet deposition and dry deposition of NO3
�

is 48% of wet deposition [Bowen and Valiela, 2001]. These
data were then spatially interpolated in ArcGIS (Environmental
Systems Research Institute, Redlands, California) using
inverse distance weighting (following NADP protocols) to
create a continuous loading surface and calculate average
state-level deposition. We regressed state-level emissions
against state-level deposition data for year 2000 indepen-
dently for NO3

� (R2 = 0.769, p< 0.001) and NH4
+

(R2 = 0.729, p< 0.001). These relationships were then
applied to historic NOx and NH3 emissions data to estimate
past N deposition levels at the state level, which were added
to estimate total N deposition to the region.
[9] To describe changes in the spatial pattern of N deposi-

tion, we used point-scale deposition data from the NADP and
earlier literature [Erikkson, 1952; Fisher, 1968; Pearson and
Fisher, 1971; Cogbill and Likens, 1974] to estimate atmo-
spheric deposition based on latitude, longitude, and year.
Deposition data extended from 1920 (four sites) to 2000
(41 sites). We developed separate regression equations for
the wet deposition of NO3

� and NH4
+. These regression

equations (equations (1) and (2)) were then used to create a
grid (7 km resolution) of N deposition rates for each study
year in ArcGIS. Mean N deposition rates were then calcu-
lated for each county and each year in ArcGIS:

NO3
� ¼ �489:9� 1:01� Longitudeþ 0:97

�Latitudeþ 0:19� Year R2 ¼ 0:24; p < 0:0001
� �

(1)

NH4
þ ¼ �50:68� 0:21� Longitudeþ 0:20

�Latitudeþ 0:01� Year R2 ¼ 0:27; p < 0:0001
� �

(2)

2.2. Fertilizer Application

[10] Fertilizer application rates (kg N or P ha�1 yr�1) for
1945 to 2002 were obtained at the county level from two U.S.
Geological Survey (USGS) reports (for years 1945–1985
[Alexander and Smith, 1990] and for years 1982–2001 [Ruddy
et al. 2006]). To estimate fertilizer application rates for earlier
decades, we used state-level fertilizer sales and nutrient content
from fertilizer use surveys [Smalley, 1929, 1939] to calculate

inputs of nutrients to each state (equation (3)). State-level
data were then disaggregated to county level using county
harvested cropland (1930 and 1940) as a proportion of
total state cropland data from the Census of Agriculture
[U.S. Census Bureau (USCB), 1932, 1942]. All inputs
were calculated as kg N or P county�1 yr�1 and then
divided by county area to obtain inputs rates in units of
kg N or P ha�1 yr�1:

Fik ¼ Fi � Ni � Cik=Ci (3)

where
Fik inputs of fertilizer N or P for the kth county in the

ith state (kg);
Fi fertilizer sales for the ith state (kg);
Ni nutrient content of fertilizer in the ith state (%);
Cik area of harvested cropland for the kth county in the

ith state (ha);
Ci area of harvested cropland for the ith state (ha).

2.3. Biological Nitrogen Fixation

[11] Biological N2 fixation was calculated by multiplying
crop and pasture areas [USCB, 1932, 1942; U.S. Department
of Agriculture (USDA), 1980, 1990, 1993, 1999, 2004] by
rates of N2 fixation obtained from Jordan and Weller [1996]
and sources cited therein (Table 1). Because land use data
for our study period were unavailable and rates of N2 fixation
in nonagricultural lands are usually low [Jordan and Weller,
1996], we assumed nonagricultural land had negligible N2

fixation rates.

2.4. Crop-Livestock Balance

[12] For each county at each time step, we calculated N
and P in crops harvested, feed imported for livestock, and
manure production to calculate the net input of N and P as
feed and food to or from the county (equations (4)–(6)).
All inputs were calculated in units of kg county�1 yr�1

and then divided by county area (in ha) to obtain net inputs
as kg N or P ha�1 yr�1. We used a spoilage rate of 10% for
all food and feed, following Jordan and Weller [1996].
[13] For livestock feed,

LFk ¼ LDk � LSk � S (4)

where
LFk net inputs of nutrients in livestock feed for the kth

county (kg);
LDk demand for nutrients by livestock in the kth county (kg);
LSk supply of nutrients for livestock feed by local crop

production in the kth county (kg);
S rate of spoilage (%).

Table 1. N2 Fixation Rates for Various Crops With References

Crop N2 Fixation Rate (kg N ha�1 yr�1) Reference

Soybeans 78 Barry et al. [1993] and Messer and Brezonik [1983]
Peanuts 86 Barry et al. [1993] and Messer and Brezonik [1983]
Nonlegume crops 5 Barry et al. [1993] and Messer and Brezonik [1983]
Alfalfa hay 218 Keeney [1979]
Nonalfalfa hay 116 Keeney [1979]
Dry edible beans 40 Keeney [1979] and Stevenson [1982]
Nonwooded pasture 15 Keeney [1979]
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[14] For consumption of N and P by humans,

HFk ¼ HCDk � HCSk � S þ HLDk � HLSk � S (5)

where
HFk net inputs of nutrients in human food for the kth

county (kg);
HCDk demand for nutrients from crops by humans in the

kth county (kg);
HCSk supply of nutrients for human food by local crop

production in the kth county (kg);
HLDk demand for nutrients from livestock by humans (e.g.,

meat, milk, and eggs) in the kth county (kg);
HLSk supply of nutrients for human food from local live

stock production in the kth county (kg).
[15] The local livestock production is defined as

HLSk ¼ LDk � LMkð Þ (6)

where LMk is the production of manure by livestock in the kth
county (kg).
[16] Total nutrients in crop harvest were estimated by multi-

plying county-level crop production data [USCB, 1932, 1942;
USDA, 1980, 1990, 1993, 1999, 2004] by crop-specific nutri-
ent content [Lander and Moffit, 1996] for the following crops:
corn for grain, wheat, oats, barley, rye, soybeans, potatoes,
sorghum, alfalfa hay, and nonalfalfa hay [Boyer et al., 2002].
We assumed that the nutrient content of each crop was con-
stant over time.We assumed that the net input of food and feed
was the difference between county-level supply and county-
level demand. Therefore, if livestock feed supply was less than
livestock feed demand, we assumed a net input of feed tomake
up the difference. Conversely, if supply was greater than de-
mand, the balance was negative and the excess was assumed
to be exported. Boyer et al. [2002] used this approach to esti-
mate anthropogenic N inputs to the NE for a single year and
found a strong correlation between feed imports calculated
using this method and imports estimated from feed expendi-
ture data. Local crop production is consumed by either live-
stock or humans or is exported. After subtracting a 10%
spoilage rate [Jordan and Weller, 1996], we made the
following proportions of crops available for human consump-
tion (i.e.,HCSk): 100% of potatoes, 61% of wheat, 17% of rye,
4% of corn, 6% of oats, and 3% of barley [Jordan and Weller,
1996]. The remaining crops were made available for livestock
consumption (i.e., LSk) [Jordan and Weller, 1996]. Any crops
not consumed by humans or livestock were exported.
[17] Livestock nutrient demand (LDk) was calculated from

county-level inventories of livestock (cattle, chickens, turkeys,
hogs, and pigs) from the Census of Agriculture [USCB, 1932,
1942; USDA, 1980, 1990, 1993, 1999, 2004] and published
nutrient consumption rates [Van Horn et al., 1996]. Nutrient
loss as manure (LMk) was calculated using livestock invento-
ries and published manure production rates per animal [Van
Horn et al., 1996]. The difference between feed inputs andma-
nure losses, minus a spoilage rate of 10% [Jordan and Weller,
1996] was assumed to go to human food products (HLSk). Any
production in excess of local demand was exported.

2.5. Human Food and Waste

[18] To calculate net inputs of food nutrients consumed by
humans, we calculated dietary demand for N and P using
county-level population [USCB, 1995, 2002] and estimates

of per-capita N and P consumption rates. Based on the
average protein consumption in the United States (80 g d�1)
[Geissler and Powers 2005], we estimated N intake to be
4.7 kg cap�1 yr�1. This is similar to other values used in
the literature [Boyer et al., 2002; Han and Allen, 2012].
The USDA recommended daily allowance of P is 0.256 kg
cap�1 yr�1[Geissler and Powers 2005], and available P in
the food supply averaged 0.55 kg cap�1 yr�1 during our
study period [Gerrior et al., 2004]. Assuming that P
consumption is higher than recommended values but lower
than that available in food supply, we averaged these values
to obtain a per capita P consumption rate of 0.4 kg P yr�1.
This value is similar to other estimates in the literature [Meybeck
et al., 1989; David and Gentry, 2000]. We assumed no net
accumulation of individuals for a given year; that is, demand
for food nutrients was assumed to be equal to nutrients in
human waste. We assumed that human protein (and therefore
nutrient) demand from animal and crop sources was 70% and
30%, respectively [Food and Agriculture Organization of the
United Nations, 2012]. Net nutrient input or export to each
county as food was calculated as the difference between human
food demand and local supply. This was calculated separately
for animal and crop sources (equation (5)).

2.6. Detergent Phosphates

[19] Phosphate-containing detergents were not used until
1945, but by 1970 inputs from detergents had reached 0.8 kg
P cap�1 yr�1 [Chapra, 1980]. We assumed a linear increase
in per-capita phosphate use from 1945 to 1970. The first bans
on detergent phosphates emerged in 1971. We used data from
Litke [1999] on detergent bans (ban dates and phosphate limits
for each state) to estimate state-level per-capita inputs for each
decade. To convert the Litke data, given as detergent phos-
phate concentrations, to per-capita inputs, we assumed a pre-
ban detergent P content of 12% for calculations [Litke, 1999].

2.7. Temporal and Spatial Statistics

[20] To determine the significance of trends in nutrient in-
puts to the region over time, we performed a linear regression
using year as the predictor variable for annual net inputs to
the region (total and for individual sources).
[21] We investigated the degree to which nutrient inputs

were distributed or concentrated across the NE throughout
the twentieth century by spatial autocorrelation. Spatial auto-
correlation measures the degree to which data from locations
close to each other are more similar than from remote loca-
tions [O’Sullivan and Unwin, 2003]. Positive spatial autocor-
relation, the most commonly observed type, indicates that the
data values for spatial entities located near each other (e.g.,
contiguous counties) are similar. Global spatial autocorrela-
tion details the degree to which statistically significant spatial
clustering of high or low data values occurs throughout the
study area. We used Moran’s I [Chang, 2008] to measure
the global spatial autocorrelation for the NE for 5 year
periods between 1930 and 2000. Moran’s I does not provide
detail on where within the study area nutrient inputs were
concentrated. Therefore, we also used a local spatial autocor-
relation metric, Local Indicators of Spatial Association
(LISA) [Anselin, 1995; Franczyk and Chang, 2009], to iden-
tify the locations of statistically significant spatial clustering
within the study area.
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3. Results and Discussion

3.1. Patterns in Nutrient Inputs to the NE Over Time

[22] Total net N inputs over the entire region increased
steadily and significantly over the study period (Figure 2a;
R2 = 0.70, p< 0.001). Farm-fertilizer inputs of N to the land-
scape increased significantly (R2 = 0.91, p< 0.001), despite a
decline in cropland area, reflecting agricultural intensifica-
tion. Food N was exported most years, but exports decreased
significantly over the study period (R2 = 0.91, p< 0.001;
Figure 2a). As the population nearly doubled (from 35 to
67.6 million), crop production for human food declined
(12% to 7% of total crop production). Although human food
N was exported throughout most of the century, the food sys-
tem as a whole was an importer of N via fertilizer and live-
stock feed (Figure 2a).
[23] Atmospheric N deposition increased significantly

over the study period (R2 = 0.88, p< 0.0001) and contributed
as much as 47% of net N inputs to the NE by the end of the
century. Since the mid-1990s, however, N deposition has de-
creased slightly due to reduced NOx emissions (EPA NEI,

http://www.epa.gov/ttn/chief/trends/index.html). Inputs of
N as livestock feed (R2 = 0.39, p< 0.05) and N2 fixation
(R2 = 0.36, p< 0.05) decreased throughout the study period;
however, these remained large contributors to total inputs,
23% and 15%, respectively, as of 2002.
[24] In contrast to N, there was no consistent linear

trend in total net P inputs across the entire study period
(Figure 2b). Instead, total net P inputs increased nearly
fourfold from 1940 to 1969, from 0.08 Tg P yr�1 to
0.29 Tg P yr�1, followed by a significant decline in the
1970s (R2 = 0.79, p< 0.01). Human food P was exported
throughout the study period, but exports declined signifi-
cantly over time (R2 = 0.71, p< 0.001), tracking the
pattern of food N. Both detergent and fertilizer P inputs
peaked around 1970 and thereafter declined signifi-
cantly (detergent: R2 = 0.75, p< 0.05; fertilizer: R2 = 0.90,
p< 0.01). Inputs of livestock feed P did not demonstrate
any significant trend over the study period.
[25] Since temporal patterns of net N and P inputs differed

over the study period, the N:P of nutrient inputs also changed
over time (Figure 2c). The N:P of total net inputs increased
from 1930 to 1940 as a result of several smaller changes in
livestock populations and crop production. From 1940 to
the mid-1960s, the trend reversed as inputs of P fertilizer
and detergents increased more rapidly than fertilizer N. The
N:P of total inputs steadily increased from 1965 to 2002
due to concurrently increasing N inputs and declining P
inputs. Across the study period, the N:P of total net inputs
was consistently greater than the N:P requirements of
humans. When we excluded atmospheric deposition of N
from the total (i.e., “Total direct inputs,” Figure 2c) as an in-
dicator of food system N:P, the N:P of inputs was high from
1930 to 1940, largely due to very low inputs of P fertilizer
and high inputs of N via biological N2 fixation. From 1940
onward, the N:P of total direct inputs was bounded between
the livestock requirement of ~11 and the human requirement
of ~26. This not only suggests that the major drivers of nutri-
ent requirements were demands for human food and live-
stock feed but also indicates that P and N inputs were well
matched with regard to demands. Excluding detergent P
and nonfarm fertilizer inputs of N and P does not substan-
tially change this pattern: N:P remains bounded within 11
and 26 (data not shown).
[26] Two other important trends of note are the increases

in N:P of farm fertilizer since 1950 (Figure 2c) and
nonfarm fertilizer since the mid-1980s (data not shown).
The N:P of farm fertilizer was much lower than that of
harvested crops throughout much of the study period, but
the two lines converged at the end of the century, indicat-
ing that fertilizer additions more closely matched crop
needs. Of course, N is also added to croplands via N2 fix-
ation. The stoichiometry of all agricultural inputs (N2 fix-
ation and N fertilizer, P fertilizer) is much above that of
crop removal throughout the study period, which indicates
an oversupply of N to crop systems. Although the stoichi-
ometry of inputs was at most 6.5 times higher than crop
uptake, the N:P of inputs moved toward the N:P of crop
removal over time, i.e., nutrient additions were more in
balance with crop removal. One final consideration with
regard to nutrient additions to agricultural soils is that P
is much more likely to accumulate in soils, whereas N is
more likely to leach from the soil column. That is, the
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average residence time of N and P may be different, and
therefore, annual inputs of fertilizers may not reflect the
N:P of plant-available nutrients in agricultural soils.

3.2. Spatial Patterns of Nutrient Inputs

[27] The overriding trend for the twentieth century NE has
been a major reorganization of the landscape, as agriculture
shifted southward, human population density increased, and
livestock populations became more concentrated. The major
pattern was a spatial separation of food production from
food consumption. At the end of the twentieth century, agri-
cultural inputs (livestock feed, fertilizer, and N2 fixation)
remained the largest inputs of nutrients at the regional scale
and were the largest source of nutrients for most counties.
However, the decline in agricultural inputs for most counties
(N: 71%, P: 64% of counties) mirrored an increase in urban N
and P inputs (human food, nonfarm fertilizer, and detergent
P, 72% of counties). The key feature of these trends was their
spatial pattern: declines in agricultural inputs were collocated
with increases in urban inputs (Figure 4; N: r =�0.22, P:
r =�0.32), suggesting a specialization of the landscape into
separate urban and agricultural subregions (Figure 4).
[28] Spatially, N and P inputs became more clustered

throughout the region, as measured by Moran’s I. Moran’s I
of N inputs ranged from 0.24 to 0.54 and increased signifi-
cantly over the study period (R2 = 0.34, p=0.02); Moran’s I
values for P inputs ranged from 0.36 to 0.65 and also increased
significantly over the study period (R2 = 0.76, p <0.0001).
Differences in the changes in clustering between N and P are
likely due to fertilizer use patterns (less widespread for P than
N) and N deposition (higher rates in forested areas of the NE).
Moran’s I was also consistently higher for P than for N
throughout the study period. Hot spots of nutrient inputs—
clusters of counties with statistically high nutrient inputs as
identified by LISA [Anselin, 1995; Franczyk and Chang,
2009]—were similar for N and P (Figure 3). The spatial statis-
tical analysis revealed persistent hot spots of N and P inputs

around the New York metropolitan area (Figure 3). Since
1970, hot spots emerged around the Chesapeake Bay in
Virginia, Pennsylvania, Maryland, and Delaware.
[29] Nutrient inputs shifted southward over the study pe-

riod (Figure 4). Changes in nutrient inputs from 1930–2000
were significantly negatively correlated with latitude for both
N (R2 = 0.09, p< 0.0001) and P (R2 = 0.07, p< 0.0001).
These shifts were related to significant southward shifts in
agricultural inputs. Changes in livestock nutrient demand
from 1930 to 2002 were significantly negatively correlated
with latitude (N and P: R2 = 0.11, p< 0.0001), as were
changes in fertilizer (N: R2 = 0.05, p< 0.0001; P: R2 = 0.11,
p< 0.0001) and N2 fixation (R2 = 0.33, p< 0.0001) from
1930 to 2002 (Figure 4). Changes in human population
density over the study period were not significantly related
to latitude.

3.3. Drivers of Changes Over Space and Time

[30] Major changes in N and P inputs are apparent at
the regional scale over space and time (Figures 2–4).
These changes resulted from changes in land use, technol-
ogy, fertilizer and food production, and nutrient emission
control legislation.
3.3.1. Role of Livestock Agriculture
[31] Previous work on the theory of ecological stoichiom-

etry suggests that human activities disproportionately affect
P cycling in order to bring nutrient ratios toward the N:P of
the human body [Sterner and Elser, 2002]. Our stoichiome-
try results suggest that livestock and human nutritional
requirements are key drivers of nutrient inputs to the NE
(Figure 2c). This pattern is in stark contrast to nutrient
inputs in the central part of the U.S., which are driven by
row-crop agriculture [Alexander et al., 2008; Broussard
and Turner, 2009].
[32] Livestock husbandry was a defining feature of the NE

nutrient landscape during the twentieth century. The majority
of the inputs of nutrients to the region were used to support
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livestock agriculture, either directly as livestock feed or indi-
rectly as fertilizer, most of which was used on feed crops.
Despite declines in cropland, crop production increased
during the twentieth century, peaking in 1992. Much of this
production was for livestock feed crops, and production of
food crops for human consumption did not change signifi-
cantly since 1930 (Figures 5a and 5b). Despite massive in-
puts of fertilizer to produce feed crops, the crop system
only provided 12 to 50% (33% on average) of the nutrients
required by livestock. The remaining nutrient demand was
met with imported feed (Figures 5c and 5d). This system was
highly inefficient in terms of nutrient use. The greater part of
feed nutrients was converted to manure, and only 6–24% of
the nutrient inputs to the regional livestock system were
consumed by humans locally (Figures 5c and 5d).
[33] Spatial patterns also demonstrate the importance of

livestock to NE nutrient inputs. To understand how the
drivers of nutrient inputs varied between counties, we catego-
rized counties as human, livestock, or crop driven based on
which had the largest demand for nutrients. We then
regressed total net N and P inputs (kg N or P ha�1 yr�1)
against human population density, total livestock nutrient
requirements (a proxy for livestock population density), and
crop uptake. Across all counties, human population density
was the best predictor of total net nutrient inputs ha�1yr�1

across time (correlation coefficients ranged from 0.88 to
0.98), and the highest nutrient inputs were in counties with
the highest population density (>5 people ha�1, N= 25
counties in 1930 and 63 counties in 2002; Figure 6).
However, for counties with low population density (<5 peo-
ple ha�1,N= 412 counties in 1930 and 374 counties in 2002),
livestock nutrient requirements ha�1 (an integrative proxy for
livestock population density that incorporates ranges in live-
stock body mass and nutrient demand) was the best predictor
of total net N and P inputs ha�1 (Figure 6). Furthermore, al-
though human population densities were the best predictor
of nutrient inputs overall, livestock were the best predictor

of nutrient inputs for the majority of counties. However, there
was a decrease in livestock-driven counties over time, from
84% to 61%, and an increase in human-driven counties, from
15% to 31%, and crop-driven counties, from 0.5% to 9%.
[34] Although the number of livestock-driven counties

decreased over the study period, average nutrient inputs to
livestock-driven counties increased from 35 to 58 kg N
ha�1 and 2.7 to 3.7 kg P ha�1. Median livestock densities
(as measured by total livestock nutrient demand) declined
over the study period (R2 = 0.61, p = 0.0002), yet maximum
densities increased (R2 = 0.94, p< 0.0001), reflecting the rise
of concentrated industrial animal agriculture. Importantly,
total livestock populations for the region have not changed
significantly over the study period. Rather, it is the shifting
spatial distribution of these populations into smaller areas
that is driving changes in nutrient inputs and possibly
increasing the clustering of nutrient inputs as measured by
Moran’s I. Meanwhile, human population densities demon-
strated the opposite pattern, where median human population
density increased (R2 = 0.98, p < 0.0001), and the maximum
human population density decreased (R2 = 0.73, p< 0.0001),
suggesting declining urban populations and increased subur-
banization or exurbanization, a trend shared with much of the
Midwest and eastern U.S. [Brown et al., 2005].
3.3.2. Crop Agriculture and Fertilizers
[35] The largest nutrient inputs to the NE during the twen-

tieth century were to support agriculture—fertilizers, N2 fix-
ation, and livestock feed (Figure 5). Figure 5 illustrates that
accumulation and/or losses accounted for a large portion of
nutrients added to agricultural crop systems as fertilizer and
N2 fixation. Although total N inputs to the crop system did
not change over time, fertilizer replaced N2 fixation as the
dominant input to the crop system. The majority of N inputs
to the crop system either accumulated in soils or were lost to
runoff, leaching, or denitrification (Figure 5a). Inputs of P to
crop systems were less than crop uptake from 1930 to 1940,
meaning that farmers were mining soils for P. Because crop

N FertilizerN Feed N FixationN Food N Deposition

Total Net P P DetergentP FertilizerP FeedP Food

kg N ha-1

kg P ha-1

Change in Inputs 

1930 to 2002

Total Net N

Figure 4. Change in N and P inputs from 1930 to 2002 for total net N and P inputs and individual nutrient
sources. Data are presented as kg P (or N) ha�1. Blue colors indicate a decrease in nutrient inputs from 1930
to 2002, orange colors indicate an overall increase in nutrient inputs from 1930 to 2002, and tan colors
indicate no net change from 1930 to 2002.
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uptake of P did not change significantly over the study
period, changes in P fertilizer use primarily affected the
amount of P accumulating in soils and lost downstream as
eroding soils (Figure 5b).
[36] Over the study period, N and P fertilizer use followed

very different patterns (Figures 2a and 2b). We can under-
stand the differences between N and P fertilizer use by com-
paring the absolute amount and stoichiometry of fertilizer
nutrients to that removed from soils by crops. The ratio of fer-
tilizer P inputs to P removed by harvested crops has moved
toward 1 since 1970, indicating more efficient use of fertil-
izers (Figure 7). This pattern was not apparent for agricultural
N inputs. N fertilizer inputs increased throughout the century,
although until the mid-1990s inputs were lower than N
removed by crops (Figure 7). Including biological N2 fixa-
tion pushed agricultural N inputs far above crop removal,
and declines in N inputs during the second half of the century
were directly related to reductions in cropland area rather

than reductions in N fertilizer use (Figure 7). Another way
of understanding fertilizer use efficiency is to compare the
stoichiometry of nutrients (i.e., N:P) added as fertilizer to
the stoichiometry of nutrients removed as crops. Ideally,
these would be equal, otherwise the nutrient added in excess
would be unused and therefore vulnerable to downstream
loss or, in the case of N, denitrification. In the NE, the N:P
of fertilizer application was much lower than that of crop har-
vest during much of the study period (Figure 2c), indicating
an over-application of P relative to N. The N:P ratios of fer-
tilizer and crop harvest converge by the end of the century,
indicating a more efficient application of fertilizer at the
regional scale. When N2 fixation is included, however, the
N:P of inputs was far in excess of that removed by crops, a
possible contributor to N pollution in rivers—for example,
throughout New England [Moore et al., 2004].
[37] The increasing efficiency of P fertilizer use was driven

by a confluence of factors: Better science allowed farmers to
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calculate optimal rates of fertilization [e.g., Bray, 1945], and
the availability of individual nutrient fertilizers rather than
multielement fertilizers allowed farmers to apply fertilizers
in ratios appropriate to their crops, soil, and climate.
Previous over-fertilization meant that many soils had
high levels of P that crops could mine [Parker, 1950;
MacDonald and Bennett, 2009], and a major spike in the cost
of fertilizer in the early 1970s acted as an incentive for
farmers to use fertilizers judiciously [Stewart, 2004;
Economic Research Service, 2011]. Fertilizer N was not un-
affected by these changes, but the effects were less dramatic.
Rather than a drop in fertilizer N use, we see a slight leveling
off. One potential reason for continued use of N fertilizers is
that N is prone to leaching and denitrification and therefore
less likely to accumulate in soils, regardless of over-fertiliza-
tion. Continued use of N despite increased concern for N pol-
lution compared to P with regard to water quality [Kurtz,
1970] suggests that changes in society’s environmental ethic
were not important drivers of the changes in P fertilizer use
during the 1970s.
3.3.3. Nutrient Legislation
[38] Although agricultural fertilizer use was never directly

regulated, detergent P and nonfarm P fertilizers have been
subject to restrictive legislative controls. Most nutrient legis-
lation during the latter part of the century focused on P reduc-
tion strategies and was to some degree successful at reducing
P concentrations in streams and rivers [Lettenmaier et al.,
1991; Litke, 1999; Lehman et al., 2009]. The legislative focus
on P during the 1970s, to the exclusion of N, was an impor-
tant reason for several of the divergent patterns of N and P in-
puts and was in part due to the scientific understanding of

nutrient limitation at the time [Howarth and Marino, 2006].
The science of the limnological tradition held that productiv-
ity in freshwater and marine systems was P limited, and
therefore, the most effective strategy to reduce eutrophication
was to reduce inputs of P. Although there was research dem-
onstrating that many marine receiving waters were N limited
[Ryther and Dunstan, 1971], water managers doubted the
results and mistrusted the bioassay methods used in marine
studies [Lee, 1973; Cloern, 2001; Howarth and Marino,
2006]. As a result, the contemporary knowledge of ecosys-
tem function at the time had a strong influence on which pol-
lution management strategies were pursued, with a long-term
legacy effect on pollution patterns regionally.
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[39] Point sources of pollution were addressed in legisla-
tion before nonpoint sources because they were relatively
easy to manage and their management had an identifiable im-
pact on water resources [Litke, 1999; Carpenter et al., 1998].
However, the NE hosts a remarkable example of effective
nonpoint source pollution legislation in the regulation of
nonfarm fertilizers. Nonfarm fertilizer was one of the most
rapidly increasing inputs of N and P to the NE. Although still
a small percentage of total N (2%) and of P (4%) inputs by
2002, nonfarm fertilizer increased substantially from 4% of
total fertilizer P inputs in 1987 (when records began) to 10%
in 2002 (and from 5% to 18% for N). Spatially, areas with
concentrated nonfarm fertilizer inputs (e.g., suburban and urban
areas) were distinct from areas with high fertilizer use for
agriculture (data not shown). Although agricultural P fertilizer
use is not regulated [Environmental Protection Agency, 1999;
The Fertilizer Institute, 2003], there has been a recent emer-
gence of P fertilizer bans for urban and suburban lawns due to
eutrophication of local water bodies [e.g., Lehman et al.,
2009]. Legislation has emerged across spatial and political
scales at the municipal, county, and state level. At this time,
11 states in the U.S., five of which are in the NE (Maine,
Maryland, New York, New Jersey, and Virginia), have passed
laws banning the use of P fertilizers for turf grass.
3.3.4. Atmospheric N
[40] Some variations between trends in N and P are due to

differences in their biogeochemical cycling potential. The N
cycle has a large inert atmospheric component while the P cy-
cle is geologic. These differences have major consequences
for the stoichiometry of NE nutrient inputs. There are three
major pathways by which humans convert inert N2 gas into
reactive N species: (1) biological N2 fixation, (2) industrial
N2 fixation (fertilizer production), and (3) NOx production as
a by-product of the combustion of fossil fuels. These types
of human activities influence the N cycle without affecting P
inputs. While industrial N2 fixation for fertilizer manufacture
is tightly controlled, N deposition is an inadvertent result of
human activity, and biological N2 fixation is indirectly con-
trolled by farmers as a result of crop choices.

[41] We found a consistent pattern when considering only
total direct inputs of N (i.e., no atmospheric sources): The
stoichiometry (N:P) of inputs and absolute amounts of N
matched nutritional needs (livestock and human require-
ments, crop uptake). The N:P of total inputs to crop systems
was substantially higher than the N:P of crop uptake and the
N:P of the total nutrient inputs for the region was higher than
the N:P of any of the major consumers in the system
(humans, livestock, crops; Figure 2c). This is evidence that
the atmospheric component of N cycle in the NE has been
poorly managed and that inputs of N from N deposition and
N2 fixation have not been adequately accounted for by nutri-
ent users. The lack of attention to atmospheric inputs of N has
led to increased N:P of nutrient inputs at the regional scale.
The excess N entering the system is then especially vulnera-
ble to downstream losses because it is not needed by the sys-
tems to which it is applied, with severe consequences for
downstream ecosystems.

3.4. Potential Ecological Consequences

[42] Accounting for anthropogenic nutrient inputs is easi-
est within human boundaries, such as municipalities and
counties, but nutrient inputs are transported by water down-
stream, and thus ecological effects must consider ecological
boundaries, in this case watersheds. We calculated the N:P
of nutrient inputs to 256 watersheds draining to the NE coast
(Figure 8). These estimates do not account for processing (by
ecosystems or technology such as waste water treatment) or
transport processes that occur within the watershed and
therefore ignore the large percentage of nutrient inputs that
may be retained by watersheds [e.g., Seitzinger et al., 2002;
Hong et al., 2012]. An additional caveat is the potential for
land use legacies to have a strong effect on downstream load-
ing [Foster et al., 2003]. P cycles much more slowly than N
due to binding with soils and sediments, and therefore water-
sheds may be more retentive of P than of N [e.g., Hong et al.,
2012]. As a result, the N:P of inputs for a year may not be a
good predictor of the N:P of nutrients delivered downstream.
P inputs from fertilizer to agricultural soils are likely to build

1930 1969 2002

N:P

0 - 7 7 - 12 12 - 16 16 - 20 20 - 50 > 50

P limitationN limitation

Figure 8. Molar N:P of nutrient inputs for watersheds draining into the Atlantic Ocean in 1930, 1970, and
2000. Ratios are displayed relative to the Redfield ratio.
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up over time [Dobermann and Cassman, 2002; MacDonald
and Bennett, 2009; MacDonald et al., 2012]. Since soil P
content is the best predictor of P transport downstream
[Carpenter et al., 1998], it is likely that in agricultural areas,
cumulative P inputs could be a better predictor of down-
stream P export than annual inputs. Finally, we calculated
nutrient inputs on an annual basis, but riverine exports are
likely to vary seasonally [Carpenter et al., 1998] due to sea-
sonal use of nutrients by humans as well as variability due to
runoff patterns. Previous research has shown significant sea-
sonal fluctuations in nutrient limitation of aquatic systems
[Howarth, 1988]. However, these estimates do provide a
qualitative spatial and temporal assessment of the stoichiom-
etry of nutrient inputs to coastal areas.
[43] The absolute amounts of nutrients entering coastal areas

are critical for determining ecological effects. However, due to
nutrient limitation, the ratios of elements are often just as, if
not more important than, the total amounts. The ratios of nutri-
ents entering estuaries and coastal areas can determine whether
or not pollution will cause eutrophication and may cause sig-
nificant shifts in phytoplankton community structure [Justic
et al., 1995; Smith, 2003]. Although a comprehensive evalua-
tion of the ecological consequences of coastal nutrient loading
over time is beyond the scope of this work, we show that the
N:P ratios of nutrient inputs have changed dramatically over
time, with potentially important ecological consequences.
Figure 8 illustrates changes in watershed stoichiometry from
1930 to 1970 to 2000 relative to the Redfield ratio (16:1),
the theoretical ratio of N:P in marine phytoplankton and ocean
waters [Redfield, 1958]. In 1930, there was a distinct pattern
where larger, more inland watersheds had N:P greater than
16, and smaller coastal watersheds had N:P less than 16.
There was also a latitudinal pattern, where coastal watersheds
alongMaine were great than 16, whereas watersheds along the
coast fromMassachusetts southward had inputs with an N:P of
less than 16. The ratio of N:P decreased dramatically by 1970
due to increased P inputs as fertilizer and detergent. The N:P of
nutrient inputs decreased for most watersheds, with the excep-
tion of northern watersheds inMaine and Cape Cod.More wa-
tersheds in 1970 experienced inputs with N:P less than the
Redfield ratio compared to 1930. By 2002, however, there
was a shift again in the opposite direction as P inputs decreased
and atmospheric deposition of N increased. The ratios by the
end of the century and for much of the northern part of the re-
gion reached an order of magnitude higher than the Redfield
ratio. These findings are consistent with global trends
[Peñuelas et al., 2012]. The latitudinal pattern in watershed
N:P was strongest in 2002. This spatial pattern is likely related
to latitudinal trends in atmospheric N deposition, as well as in-
creases in livestock agriculture (associated with relatively low
N:P demand; Figure 2c) in the southern portion of the study
area. Although in general marine systems are currently consid-
ered N-limited, this ratio of nutrient loading could shift receiv-
ing systems from N to P limitation, depending on loading
relative to water volumes and flows as well as cycling rates
in receiving waters. This is not unprecedented. Billen et al.
[2007] found that legislative P controls and uncontrolled in-
creases in N loading to the Seine River in France led to a shift
from N to P limitation in the marine system. N inputs from at-
mospheric deposition have also been found to shift freshwater
systems from N to P limitation [Elser et al., 2009]. Shifts in
nutrient limitation of NE coastal and freshwaters over time

and space not only have implications for ecosystems and the
economies that depend on them but must also be taken into
account when designing effective nutrient legislation.

3.5. Sources of Uncertainty and Limitations

[44] Due to the scope of our work, particularly its historical
nature, we relied entirely on publically available data sets for
our data sources and for calculating nutrient inputs associated
with each. Here we discuss the sources of uncertainty and the
resulting limitations of our research. The two main sources of
uncertainty are those associated with the data themselves,
including their spatial and temporal resolution, and the coef-
ficients used to calculate the nutrient budgets.
3.5.1. Uncertainty in Data Sources
[45] The majority of our data were obtained from the U.S.

Census of Agriculture reported at the county scale. These data
are self-reported, and therefore, there is a certain level of error
that can be expected in these data. However, due to the large
number of counties (437), we have confidence in the general
spatial and temporal patterns generated by this resolution.
[46] There is also uncertainty associated with our N depo-

sition estimates. We have the most confidence in our esti-
mates based on NADP data, for which there were 41 data
points available since 1978. Interpolating regional N deposi-
tion from this number of points certainly ignored smaller-
scale variation in deposition rates. Jaworski et al. [1997]
demonstrated that riverine N export from watersheds with
minimal agricultural or urban inputs was strongly predicted
by N deposition estimated from NADP data, suggesting that
this resolution of data is appropriate for regional-scale stud-
ies. Uncertainty increases for earlier years, where data were
limited or nonexistent. County-level deposition rates were
estimated using multiple regressions (equations (1) and (2)),
whereas total regional deposition rates were estimated from
emissions data. These two methods yielded similar deposition
estimates for the whole region from 1974 to 2002, but
estimates increasingly diverged back in time, so that in 1930
our emissions-based deposition for the region was 0.92 Tg
and our regression-based estimate was 0.39 Tg. These differ-
ences do lead to differences in total N input estimates of up
to 20% (for 1930, estimated net N inputs are 2.11 Tg using
spatial model and 2.64 Tg using the emissions model).
However, temporal trends in atmospheric N inputs and total
N inputs are robust to the N deposition model selection, as
are trends in nutrient stoichiometry. N:P of nutrient inputs
varied by as much as 7 (molar ratio, 1930) using different N
deposition models, but the overall pattern was robust. N:P
peaked in 1940 using both models, though N:P values were
47 using the emissions model and 40 using the spatial model.
The lowest N:P value was in 1964 and was 22 using emissions
data and 20 using the spatial model.
[47] A second source of uncertainty in our N deposition

data was the calculation of dry deposition and organic N de-
position. Estimates of dry deposition as a proportion of total
deposition in the eastern U.S. range from 25% to 70% for
NO3

� and 2% to 33% for NH4
+ deposition [Bowen and

Valiela, 2001] and are likely to be variable over space and
time. However, since there are little data on how dry deposi-
tion varies over space, we used a consistent coefficient from
the literature [Bowen and Valiela, 2001]. Spatial and tempo-
ral variation in dry deposition might have either damped or
strengthened the patterns that we observed.
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3.5.2. Uncertainty in Data Generated
[48] Nutrient demand, consumption, and production by

crops, livestock, and humans likely varied over time and
space during our study period as agricultural practices and
human diets changed [Gerrior et al., 2004; Metson et al.,
2012]. Because of data limitations and the scope of our re-
search, we made the simplifying assumption that coefficients
used to calculate input rates did not vary.
[49] Biological N2 fixation rates range widely in the litera-

ture, though our estimates fall in the middle [Smil, 1999]. We
calculated N2 fixation based on the area of cropland planted
in various crops. This is consistent with other nutrient inputs
studies [e.g., Jordan and Weller, 1996; Boyer et al., 2002;
Hong et al., 2012; Howarth et al., 2012]. However, other re-
search has suggested that N2 fixation varies with crop yield
[Herridge et al., 2008], and therefore it is possible that N2

fixation rates per area increased as yields increased over our
study period. Similarly, we assumed that the nutrient content
of crops remained constant over the study period. Fertilizer
use typically increases not only the yield but also the nutrient
content of crop plants [e.g., Lawlor, 2002], thus nutrient
uptake per crop yield has likely increased over time. Since
we used contemporary values of crop nutrient content, esti-
mates of nutrient accumulation in agricultural soils are possi-
bly underestimates during the early part of our study period,
though the magnitude of this uncertainty is unknown.
[50] Fertilizer use rates from 1945 to 2002 were obtained

from USGS reports [Alexander and Smith, 1990; Ruddy
et al., 2006] where county-level fertilizer use was estimated
from county-level fertilizer sales. For earlier years
(1930–1940), fertilizer use at the county level was estimated
based on state fertilizer sales disaggregated to the county
level using harvested crop area. If fertilizer use patterns
varied within states, spatial patterns for these years could
be stronger than our estimates.
[51] Livestock nutrient demand was estimated based on

inventories and published coefficients for livestock nutrient re-
quirements. However, livestock nutrient demand per animal
likely increased over time due to changing agricultural prac-
tices, which would strengthen the spatial and temporal trends
that we described. Similarly, human nutrient demand likely
increased over the study period as protein consumption
increased in the United States [Gerrior et al., 2004].
Thus, our estimates of livestock and human nutrient demand
are likely liberal in terms of inputs during the early part
of our study period but conservative in terms of changes
in inputs over time, particularly the last few decades (i.e.,
including variation in coefficients would likely strengthen
the trends observed).
[52] In calculating the local supply of nutrients in human

food and livestock feed, we assumed that a certain percentage
of each crop type was used for food or feed (e.g., 4% of corn
went to human food). These percentages are likely to vary
over both time and space, especially as livestock husbandry
practices have changed. Because the NE imported the
majority of feed and crop food across the study period, we
think that this is likely a small source of uncertainty.
Furthermore, we did not account for pasture grazing as a
source of livestock feed. This is likely a small source of local
nutrients by the end of the century due to changing livestock
raising practices, but may have been more important at the
beginning of the study period.

[53] We assumed constant spoilage rates across food and
feed types and over space and time. This assumption is con-
sistent with previous anthropogenic nutrient budgeting liter-
ature [e.g., Boyer et al., 2002; Hong et al., 2011]. This
spoilage rate includes many types of waste along the food
production chain, including waste in production, transporta-
tion, retail, and consumer waste. The FAO publishes spoilage
rates for various feed and food types that are higher and more
variable than the rate we used (e.g., 20–60% [Gustavsson
et al., 2011]). However, given that spoilage rates likely vary
over time and space, especially in response to changing agri-
cultural, transport, and consumer practices, we think that a
consistent value facilitates interpretation.

4. Conclusions

[54] Anthropogenic nutrient use is highly dynamic both
spatially and temporally and responds to scientific under-
standing, policy changes, technology, and land-use and
demographic changes. Over the twentieth century, we found
that agriculture, and livestock agriculture in particular,
was the major driver of spatial patterns of nutrient use.
Livestock consumed the majority of nutrient inputs to the
NE, and the spatial concentration of livestock populations
over time drove changes in the spatial patterns of nutrient
inputs. As a result, spatial and temporal changes in nutrient
inputs mirror the history of agricultural policies which have
shifted the locations of U.S. agriculture, particularly the
movement of row crop agriculture to the west and the devel-
opment of concentrated livestock agriculture in the NE.
Similarly, human demographic trends—suburbanization in
particular—led to increases in human food nutrient inputs
across the region. These changes have led to major spatial
and temporal changes in the stoichiometry of nutrient inputs,
with important potential ecological consequences for N and P
limitation of receiving waters.
[55] Future nutrient management strategies will need to

take into account the multiple pathways through which
humans affect nutrient inputs. Our study period included ma-
jor developments in environmental legislation, including the
pioneering Clean Air and Water Acts. Our results show that
environmental regulations that regulate direct emissions have
been successful in reducing some inputs of P, namely, deter-
gents and nonfarm fertilizers. Agricultural fertilizers remain a
major contributor to nutrient inputs in the NE and are a
difficult management issue due to the distributed nature of
the inputs, the lability and multiphase nature of N and P,
and the difficulty of enforcement. However, we did find that
P fertilizer use responded strongly to economic drivers,
suggesting that indirect economic mechanisms may be a via-
ble option for fertilizer use management. Management of N
remains more difficult than of P due to the atmospheric
component of the N cycle, highlighting the importance of
including the atmospheric component in managing N inputs.
Of strategic importance to regional nutrient management is
the fact that N uptake by agricultural crops is much higher
than N fertilizer additions, suggesting the critical importance
of both managed applications (i.e., fertilizer) and N2 fixation
which today are equivalent to double crop needs. A complete
accounting may facilitate fertilizer use management and
minimize water quality management challenges associated
with fertilizer application.
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[56] Optimizing nutrient management to cobalance agricul-
tural production and environmental protection remains a
difficult task in the NE. Additional challenges will also be
associated in refining the debate on carbon management, the
use of cropland for biofuels, and preparing the region for
future climate change. The variety of drivers of nutrient use
presents a challenge for decision makers who must take in
account the interactions between economics, biogeochemistry,
technology, and policy. However, the diversity of drivers
presents an opportunity as well—policy makers have many
levers at their disposal beyond directly managing nutrient
use. A historical approach can illustrate when and where
different approaches may or may not succeed and facilitate a
multifaceted approach to nutrient management that takes
advantage of the multiple social, political, economic, and envi-
ronmental drivers of human nutrient use.
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