431 research outputs found

    TESS and CHEOPS discover two warm sub-Neptunes transiting the bright K-dwarf HD 15906

    Get PDF
    We report the discovery of two warm sub-Neptunes transiting the bright (G = 9.5 mag) K-dwarf HD 15906 (TOI 461, TIC 4646810). This star was observed by the Transiting Exoplanet Survey Satellite (TESS) in sectors 4 and 31, revealing two small transiting planets. The inner planet, HD 15906 b, was detected with an unambiguous period but the outer planet, HD 15906 c, showed only two transits separated by ∌ 734 d, leading to 36 possible values of its period. We performed follow-up observations with the CHaracterising ExOPlanet Satellite (CHEOPS) to confirm the true period of HD 15906 c and improve the radius precision of the two planets. From TESS, CHEOPS, and additional ground-based photometry, we find that HD 15906 b has a radius of 2.24 ± 0.08 R⊕ and a period of 10.924709 ± 0.000032 d, whilst HD 15906 c has a radius of 2.93+0.07−0.06 R⊕ and a period of 21.583298+0.000052−0.000055 d. Assuming zero bond albedo and full day-night heat redistribution, the inner and outer planet have equilibrium temperatures of 668 ± 13 K and 532 ± 10 K, respectively. The HD 15906 system has become one of only six multiplanet systems with two warm (â‰Č 700 K) sub-Neptune sized planets transiting a bright star (G ≀ 10 mag). It is an excellent target for detailed characterization studies to constrain the composition of sub-Neptune planets and test theories of planet formation and evolution

    Presence of Putative Repeat-in-Toxin Gene tosA in Escherichia coli Predicts Successful Colonization of the Urinary Tract

    Get PDF
    Uropathogenic Escherichia coli (UPEC) strains, which cause the majority of uncomplicated urinary tract infections (UTIs), carry a unique assortment of virulence or fitness genes. However, no single defining set of virulence or fitness genes has been found in all strains of UPEC, making the differentiation between UPEC and fecal commensal strains of E. coli difficult without the use of animal models of infection or phylogenetic grouping. In the present study, we consider three broad categories of virulence factors simultaneously to better define a combination of virulence factors that predicts success in the urinary tract. A total of 314 strains of E. coli, representing isolates from fecal samples, asymptomatic bacteriuria, complicated UTIs, and uncomplicated bladder and kidney infections, were assessed by multiplex PCR for the presence of 15 virulence or fitness genes encoding adhesins, toxins, and iron acquisition systems. The results confirm previous reports of gene prevalence among isolates from different clinical settings and identify several new patterns of gene associations. One gene, tosA, a putative repeat-in-toxin (RTX) homolog, is present in 11% of fecal strains but 25% of urinary isolates. Whereas tosA-positive strains carry an unusually high number (11.2) of the 15 virulence or fitness genes, tosA-negative strains have an average of only 5.4 virulence or fitness genes. The presence of tosA was predictive of successful colonization of a murine model of infection, even among fecal isolates, and can be used as a marker of pathogenic strains of UPEC within a distinct subset of the B2 lineage

    CHEOPS observations of the HD 108236 planetary system: a fifth planet, improved ephemerides, and planetary radii

    Get PDF
    Context. The detection of a super-Earth and three mini-Neptunes transiting the bright (V = 9.2 mag) star HD 108236 (also known as TOI-1233) was recently reported on the basis of TESS and ground-based light curves. Aims: We perform a first characterisation of the HD 108236 planetary system through high-precision CHEOPS photometry and improve the transit ephemerides and system parameters. Methods: We characterise the host star through spectroscopic analysis and derive the radius with the infrared flux method. We constrain the stellar mass and age by combining the results obtained from two sets of stellar evolutionary tracks. We analyse the available TESS light curves and one CHEOPS transit light curve for each known planet in the system. Results: We find that HD 108236 is a Sun-like star with R⋆ = 0.877 ± 0.008 R⊙, M⋆ = 0.869-0.048+0.050 M⊙, and an age of 6.7-5.1+4.0 Gyr. We report the serendipitous detection of an additional planet, HD 108236 f, in one of the CHEOPS light curves. For this planet, the combined analysis of the TESS and CHEOPS light curves leads to a tentative orbital period of about 29.5 days. From the light curve analysis, we obtain radii of 1.615 ± 0.051, 2.071 ± 0.052, 2.539-0.065+0.062, 3.083 ± 0.052, and 2.017-0.057+0.052 R⊕ for planets HD 108236 b to HD 108236 f, respectively. These values are in agreement with previous TESS-based estimates, but with an improved precision of about a factor of two. We perform a stability analysis of the system, concluding that the planetary orbits most likely have eccentricities smaller than 0.1. We also employ a planetary atmospheric evolution framework to constrain the masses of the five planets, concluding that HD 108236 b and HD 108236 c should have an Earth-like density, while the outer planets should host a low mean molecular weight envelope. Conclusions: The detection of the fifth planet makes HD 108236 the third system brighter than V = 10 mag to host more than four transiting planets. The longer time span enables us to significantly improve the orbital ephemerides such that the uncertainty on the transit times will be of the order of minutes for the years to come. A comparison of the results obtained from the TESS and CHEOPS light curves indicates that for a V ~ 9 mag solar-like star and a transit signal of ~500 ppm, one CHEOPS transit light curve ensures the same level of photometric precision as eight TESS transits combined, although this conclusion depends on the length and position of the gaps in the light curve. Light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/646/A15

    Six transiting planets and a chain of Laplace resonances in TOI-178

    Get PDF
    Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152−0.070+0.073 to 2.87−0.13+0.14 Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02−0.23+0.28 to 0.177−0.061+0.055 times the Earth's density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H = 8.76 mag, J = 9.37 mag, V = 11.95 mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes

    The acute effects of free-weight and elastic band back squat exercise on subsequent vertical jump performance

    Get PDF
    Introduction: The back squat exercise is a fundamental exercise for the development of lower limb strength and power. However, in successful attempts of one repetition maximum (1-RM), the upward barbell movement decelerates for a short period referred to as the “sticking point”. The inclusion of elastic bands (EB) minimises the loading during the early concentric phase, while maintaining average loading throughout the lift may limit the impact of the sticking point and enables the athlete to work more closely to maximal throughout a greater range of the lift. Objective: To examine the inïŹ‚uence of free-weight resistance (FWR) and EB squat exercise following a comprehensive warm-up on subsequent vertical jump (VJ) performance. Hypothesis: The use of EB during squatting following a comprehensive warm-up would:- (a) enhance subsequent VJ performance; (b) alter VJ mechanics; and (c) increase the neuromuscular activity of the lower limb extensor muscles, when compared to FWR. Methods: Fifteen active men (n=15) visited the laboratory on two occasions under experimental conditions (FWR or EB). After completing a comprehensive warm-up procedure, three maximal VJs were performed and then three consecutive back squat repetitions were completed at 85% of 1-RM using either FWR or EB. Three VJs were then performed 30 s, 4 min, 8 min and 12 min later. During the VJs, knee joint kinematics, ground reaction force data and vastus medialis (VM), vastus (VL) lateralis and gluteus maximus (Glut) electromyograms (EMG) were recorded simultaneously using 3D motion, force platform, and EMG techniques, respectively. Results: No change in any variable was found after the FWR warm-up (p > 0.05). Significant increases (p < 0.05) were detected in CVJ height (5.3-6.5%), net impulse (2.7-3.3%), take-off velocity (2.7-3.8%), peak power (4.4-5.9%), kinetic (7.1-7.2%) and potential (5.4-6.7%) energy, peak (12.9-19.1%) and mean (33.2-35.8%) normalized rate of force development (RFD) following the EB warm-up. Significant increases (p < 0.05) in peak concentric knee angular velocities (3.1-4.1%) and mean concentric VL EMG activity (27.5-33.4%) following the EB warm-up. Discussion: The use of heavy squat lifts with EB increases vertical jump performance following a comprehensive warm-up. The use of EB manipulates the loading characteristics of the squat lift by reducing the effective load near the “sticking point”. This modification in loading allows the athlete to operate at near-maximal levels for a greater proportion of the movement to enhance muscle force output and elicit a greater dynamic muscle performance, which likely provides a greater loading stimulus and may be a more effective training tool even when comprehensive task-specific warm-up is performed

    Use of sonic tomography to detect and quantify wood decay in living trees.

    Get PDF
    Premise of the studyField methodology and image analysis protocols using acoustic tomography were developed and evaluated as a tool to estimate the amount of internal decay and damage of living trees, with special attention to tropical rainforest trees with irregular trunk shapes.Methods and resultsLiving trunks of a diversity of tree species in tropical rainforests in the Republic of Panama were scanned using an Argus Electronic PiCUS 3 Sonic Tomograph and evaluated for the amount and patterns of internal decay. A protocol using ImageJ analysis software was used to quantify the proportions of intact and compromised wood. The protocols provide replicable estimates of internal decay and cavities for trees of varying shapes, wood density, and bark thickness.ConclusionsSonic tomography, coupled with image analysis, provides an efficient, noninvasive approach to evaluate decay patterns and structural integrity of even irregularly shaped living trees

    Adipocyte ATP-binding cassette G1 promotes triglyceride storage, fat mass growth, and human obesity

    Get PDF
    The role of ATP-binding Cassette G1 (ABCG1) transporter in human pathophysiology is still largely unknown. Indeed, beyond its role in mediating free cholesterol efflux to HDL, ABCG1 transporter equally promotes lipid accumulation in a triglyceride (TG)-rich environment through regulation of the bioavailability of Lipoprotein Lipase (LPL).As both ABCG1 and LPL are expressed in adipose tissue, we hypothesize that ABCG1 is implicated in adipocyte TG storage and could be then a major actor in adipose tissue fat accumulation.Silencing of Abcg1 expression by RNAi in 3T3-L1 preadipocytes compromised LPL-dependent TG accumulation during initial phase of differentiation. Generation of stable Abcg1 Knockdown 3T3-L1 adipocytes revealed that Abcg1 deficiency reduces TG storage and diminishes lipid droplet size through inhibition of PparÎł expression. Strikingly, local inhibition of adipocyte Abcg1 in adipose tissue from mice fed a high fat diet led to a rapid decrease of adiposity and weight gain. Analysis of two frequent ABCG1 SNPs (rs1893590 (A/C) and rs1378577 (T/G)) in morbidly obese individuals indicated that elevated ABCG1 expression in adipose tissue was associated with an increased PPARÎł expression and adiposity concomitant to an increased fat mass and BMI (haplotype AT&gt;GC). The critical role of ABCG1 regarding obesity was further confirmed in independent populations of severe obese and diabetic obese individuals.For the first time, this study identifies a major role of adipocyte ABCG1 in adiposity and fat mass growth and suggests that adipose ABCG1 might represent a potential therapeutic target in obesity

    Evidence for transit-timing variations of the 11 Myr exoplanet TOI-1227 b

    Get PDF
    TOI-1227 b is an 11 Myr old validated transiting planet in the middle of its contraction phase, with a current radius of 0.85 RJ. It orbits a low-mass pre-main sequence star (0.170 M⊙, 0.56 R⊙) every 27.4 days. The magnetic activity of its young host star induces radial velocity jitter and prevents good measurements of the planetary mass. We gathered additional transit observations of TOI-1227 b with space- and ground-based telescopes, and we detected highly significant transit-timing variations (TTVs). Their amplitude is about 40 minutes and their dominant timescale is longer than 3.7 years. Their most probable origin is dynamical interactions with additional planets in the system. We modeled the TTVs with inner and outer perturbers near first and second order resonances; several orbital configurations provide an acceptable fit. More data are needed to determine the actual orbital configuration and eventually measure the planetary masses. These TTVs and an updated transit chromaticity analysis reinforce the evidence that TOI-1227 b is a planet

    An integrated 1D–2D hydraulic modelling approach to assess the sensitivity of a coastal region to compound flooding hazard under climate change

    Get PDF
    Coastal regions are dynamic areas that often lie at the junction of different natural hazards. Extreme events such as storm surges and high precipitation are significant sources of concern for flood management. As climatic changes and sea-level rise put further pressure on these vulnerable systems, there is a need for a better understanding of the implications of compounding hazards. Recent computational advances in hydraulic modelling offer new opportunities to support decision-making and adaptation. Our research makes use of recently released features in the HEC-RAS version 5.0 software to develop an integrated 1D–2D hydrodynamic model. Using extreme value analysis with the Peaks-Over-Threshold method to define extreme scenarios, the model was applied to the eastern coast of the UK. The sensitivity of the protected wetland known as the Broads to a combination of fluvial, tidal and coastal sources of flooding was assessed, accounting for different rates of twenty-first century sea-level rise up to the year 2100. The 1D–2D approach led to a more detailed representation of inundation in coastal urban areas, while allowing for interactions with more fluvially dominated inland areas to be captured. While flooding was primarily driven by increased sea levels, combined events exacerbated flooded area by 5–40% and average depth by 10–32%, affecting different locations depending on the scenario. The results emphasise the importance of catchment-scale strategies that account for potentially interacting sources of flooding

    Durability of Mortar Incorporating Ferronickel Slag Aggregate and Supplementary Cementitious Materials Subjected to Wet–Dry Cycles

    Get PDF
    This paper presents the strength and durability of cement mortars using 0–100% ferronickel slag (FNS) as replacement of natural sand and 30% fly ash or ground granulated blast furnace slag (GGBFS) as cement replacement. The maximum mortar compressive strength was achieved with 50% sand replacement by FNS. Durability was evaluated by the changes in compressive strength and mass of mortar specimens after 28 cycles of alternate wetting at 23 °C and drying at 110 °C. Strength loss increased by the increase of FNS content with marginal increases in the mass loss. Though a maximum strength loss of up to 26% was observed, the values were only 3–9% for 25–100% FNS contents in the mixtures containing 30% fly ash. The XRD data showed that the pozzolanic reaction of fly ash helped to reduce the strength loss caused by wet–dry cycles. Overall, the volume of permeable voids (VPV) and performance in wet–dry cycles for 50% FNS and 30% fly ash were better than those for 100% OPC and natural sand
    • 

    corecore