86 research outputs found

    Litter Quality of Populus Species as Affected by Free-Air CO2

    Get PDF
    The effect of elevated CO2 and nitrogen fertilization on the molecular chemistry of litter of three Populus species and associated soil organic matter (SOM) was investigated by pyrolysis-gas chromatography/mass spectrometry. The results are based on 147 quantified organic compounds in 24 litter samples. Litter of P. euramerica was clearly different from that of P. nigra and P. alba. The latter two had higher contents of proteins, polysaccharides, and cutin/cutan, while the former had higher contents of phenols and benzofurans/pyrans. The difference between replications was at least as large as the effect of treatments, so that no systematic chemical changes were attributable to CO2 effect or N-fertilization effect. The chemistry of SOM under the various species and treatments did not show significant changes either. The low number of available replicates that is two was clearly insufficient to overcome the effect of spatial variation on litter chemistry and detect small differences in molecular litter chemistry

    Effects of free atmospheric CO2 enrichment (FACE), N fertilization and poplar genotype on the physical protection of carbon in the mineral soil of a poplar plantation after five years

    Get PDF
    Free air CO2 enrichment (FACE) experiments in aggrading forests and plantations have demonstrated significant increases in net primary production (NPP) and C storage in forest vegetation. The extra C uptake may also be stored in forest floor litter and in forest soil. After five years of FACE treatment at the EuroFACE short rotation poplar plantation, the increase of total soil C% was larger under elevated than under ambient CO2. However, the fate of this additional C allocated belowground remains unclear. The stability of soil organic matter is controlled by the chemical structure of the organic matter and the formation of micro-aggregates (within macro-aggregates) in which organic matter is stabilized and protected. FACE and N-fertilization treatment did not affect the micro- and macro-aggregate weight, C or N fractions obtained by wet sieving. However, Populus euramericana increased the small macro-aggregate and free micro-aggregate weight and C fractions. The obtained macro-aggregates were broken up in order to isolate recently formed micro-aggregates within macro-aggregates (iM-micro-aggregates). FACE increased the iM-micro-aggregate weight and C fractions, although not significantly. This study reveals that FACE did not affect the formation of aggregates. We did, however, observe a trend of increased stabilization and protection of soil C in micro-aggregates formed within macro-aggregates under FACE. Moreover, the largest effect on aggregate formation was due to differences in species, i.e. poplar genotype. P. euramericana increased the formation of free micro-aggregates which means that more newly incorporated soil C was stabilized and protected. The choice of species in a plantation, or the effect of global change on species diversity, may therefore affect the stabilization and protection of C in soils

    Soil C, N and P cycling enzyme responses to nutrient limitation under elevated CO2

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordData availability: Data will be available from the Environmental Information Data Centre, https://eidc.ac.uk/Elevated CO2 (eCO2) can stimulate plant productivity and increase carbon (C) input to soils, but nutrient limitation restricts productivity. Despite phosphorus (P)-limited ecosystems increasing globally, it is unknown how nutrient cycling, particularly soil microbial extra cellular enzyme activity (EEA), will respond to eCO2 in such ecosystems. Long-term nutrient manipulation plots from adjacent P-limited acidic and limestone grasslands were exposed to eCO2 (600 ppm) provided by a mini-Free Air CO2 Enrichment system. P-limitation was alleviated (35 kg-P ha−1 y−1 (P35)), exacerbated (35 kg-N ha−1 y−1 (N35), 140 kg-N ha−1 y−1 (N140)), or maintained (control (P0N0)) for > 20 years. We measured EEAs of C-, N- and P-cycling enzymes (1,4-β-glucosidase, cellobiohydrolase, N-acetyl β-D-glucosaminidase, leucine aminopeptidase, and acid phosphatase) and compared C:N:P cycling enzyme ratios using a vector analysis. Potential acid phosphatase activity doubled under N additions relative to P0N0 and P35 treatments. Vector analysis revealed reduced C-cycling investment and increased P-cycling investment under eCO2. Vector angle significantly increased with P-limitation (P35 < P0N0 < N35 < N140) indicating relatively greater investment in P-cycling enzymes. The limestone grassland was more C limited than the acidic grassland, characterised by increased vector length, C:N and C:P enzyme ratios. The absence of interactions between grassland type and eCO2 or nutrient treatment for all enzyme indicators signaled consistent responses to changing P-limitation and eCO2 in both grasslands. Our findings suggest that eCO2 reduces C limitation, allowing increased investment in P- and N-cycle enzymes with implications for rates of nutrient cycling, potentially alleviating nutrient limitation of ecosystem productivity under eCO2.Natural Environment Research Council (NERC

    Soil chemical changes in ancient irrigated fields of Udhruḥ, southern Jordan

    Get PDF
    BioarchaeologyClassical & Mediterranean ArchaeologyArchaeology of the Near Eas

    Ecopedological explorations of three calcareous rich fens in the Slovak Republic

    Get PDF
    This report presents the findings of quick surveys in three declining calcareous rich fens in the Slovak Republic to understand their origin and present state. Hypotheses were generated for further elaborated research as a base for restoration measures. Distinct sites along cross-sections were investigated by augering, soil sampling, making vegetation relevées and measuring temperatures and electric conductivities in peat profiles. Soil samples were collected for chemical analyses. Comparable processes and patterns were observed in the fens. The distribution patterns of the plant communities were strictly related to hydrological and pedological factors. The fens developed as flow-through-systems, with alternating cold discharge and warm recharge zones. Clear layers of calcite, pyrite and iron oxides alternated with organic layers in the discharge zones. Trophic levels of plant communities increased from the discharge to the recharge zones and were distinguished by distinct humus forms. Hardly any evidence was got for Fe- or Ca-bound inorganic P to explain low productivity at calcareous discharge sites, compared to recharge sites. Extremely low C/N and C/P ratio's suggested P and N immobilization by humification in these environments

    Seasonal fluctuations of extracellular enzyme activities are related to the biogeochemical cycling of C, N and P in a tropical terra-firme forest

    Get PDF
    Extracellular enzymes (EE) play a vital role in soil nutrient cycling and thus affect terrestrial ecosystem functioning. Yet the drivers that regulate microbial activity, and therefore EE activity, remain under debate. In this study we investigate the temporal variation of soil EE in a tropical terra-firme forest. We found that EE activity peaked during the drier season in association with increased leaf litterfall, which was also reflected in negative relationships between EE activities and precipitation. Soil nutrients were weakly related to EE activities, although extractable N was related to EE activities in the top 5 cm of the soil. These results suggest that soil EE activity is synchronized with precipitation-driven substrate inputs and depends on the availability of N. Our results further indicate high investments in P acquisition, with a higher microbial N demand in the month before the onset of the drier season, shifting to higher P demand towards the end of the drier season. These seasonal fluctuations in the potential acquisition of essential resources imply dynamic shifts in microbial activity in coordination with climate seasonality and resource limitation of central-eastern Amazon forests

    Extracellular enzyme activities in tropical soils are driven by seasonal litter input

    Get PDF
    Background It is relatively unknown if and how seasonal fluctuations of tropical microbial activity affect soil nutrient availability. In tropical forests, nutrient economics are often considered to be centered around phosphorus, which might be a limiting factor to sustain crucial ecosystem processes, such as primary production and decomposition of organic material, thus in turn affecting microbial processes and associated nutrient dynamics of the forest ecosystem. Aims We investigate seasonal fluctuations in extracellular hydrolytic soil enzyme activities and soil nutrients and its relationship with precipitation and litterfall input, in a lowland tropical forest in the Central Amazon region. Methods We analyzed data obtained from monitoring microbial enzyme activity and nutrient dynamics in litter and soil and use stoichiometric enzyme theory and proportional vectors for assessing relative nutrient limitation throughout a year. Results Our results show that precipitation seasonality was driving leaf litterfall, which was subsequently synchronized with extracellular enzyme activities in soil, such that both litterfall and enzyme activities peaked during the dry season. Conclusions Our study indicates that soil extractable nutrient concentrations were positively related to microbial enzyme activities, which thus highlights the importance of soil microbial processes for nutrient cycling in this phosphorus limited ecosystem. Our results suggest that projected shifts in climate seasonality that result in longer and more pronounced dry seasons, might desynchronize seasonal patterns of aboveground nutrient input and belowground microbial activity, and thus leading to a decoupling of nutrient cycling in tropical forest ecosystems

    Litter inputs and phosphatase activity affect the temporal variability of organic phosphorus in a tropical forest soil in the Central Amazon

    Get PDF
    Purpose The tropical phosphorus cycle and its relation to soil phosphorus (P) availability are a major uncertainty in projections of forest productivity. In highly weathered soils with low P concentrations, plant and microbial communities depend on abiotic and biotic processes to acquire P. We explored the seasonality and relative importance of drivers controlling the fluctuation of common P pools via processes such as litter production and decomposition, and soil phosphatase activity. Methods We analyzed intra-annual variation of tropical soil phosphorus pools using a modified Hedley sequential fractionation scheme. In addition, we measured litterfall, the mobilization of P from litter and soil extracellular phosphatase enzyme activity and tested their relation to fluctuations in P- fractions. Results Our results showed clear patterns of seasonal variability of soil P fractions during the year. We found that modeled P released during litter decomposition was positively related to change in organic P fractions, while net change in organic P fractions was negatively related to phosphatase activities in the top 5 cm. Conclusion We conclude that input of P by litter decomposition and potential soil extracellular phosphatase activity are the two main factors related to seasonal soil P fluctuations, and therefore the P economy in P impoverished soils. Organic soil P followed a clear seasonal pattern, indicating tight cycling of the nutrient, while reinforcing the importance of studying soil P as an integrated dynamic system in a tropical forest context

    Modeling the vertical soil organic matter profile using Bayesian parameter estimation

    Get PDF
    The vertical distribution of soil organic matter (SOM) in the profile may constitute an important factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing due to bioturbation, and organic matter leaching. In this study we quantified the contribution of these three processes using Bayesian parameter estimation for the mechanistic SOM profile model SOMPROF. Based on organic carbon measurements, 13 parameters related to decomposition and transport of organic matter were estimated for two temperate forest soils: an Arenosol with a mor humus form (Loobos, the Netherlands), and a Cambisol with mull-type humus (Hainich, Germany). Furthermore, the use of the radioisotope Pb-210(ex) as tracer for vertical SOM transport was studied. For Loobos, the calibration results demonstrate the importance of organic matter transport with the liquid phase for shaping the vertical SOM profile, while the effects of bioturbation are generally negligible. These results are in good agreement with expectations given in situ conditions. For Hainich, the calibration offered three distinct explanations for the observations (three modes in the posterior distribution). With the addition of Pb-210(ex) data and prior knowledge, as well as additional information about in situ conditions, we were able to identify the most likely explanation, which indicated that root litter input is a dominant process for the SOM profile. For both sites the organic matter appears to comprise mainly adsorbed but potentially leachable material, pointing to the importance of organo-mineral interactions. Furthermore, organic matter in the mineral soil appears to be mainly derived from root litter, supporting previous studies that highlighted the importance of root input for soil carbon sequestration. The Pb-210(ex) measurements added only slight additional constraint on the estimated parameters. However, with sufficient replicate measurements and possibly in combination with other tracers, this isotope may still hold value as tracer for SOM transport

    Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter

    Get PDF
    The atmospheric concentration of CO2 is predicted to reach double current levels by 2075. Detritus from aboveground and belowground plant parts constitutes the primary source of C for soil organic matter (SOM), and accumulation of SOM in forests may provide a significant mechanism to mitigate increasing atmospheric CO2 concentrations. In a poplar (three species) plantation exposed to ambient (380 ppm) and elevated (580 ppm) atmospheric CO2 concentrations using a Free Air Carbon Dioxide Enrichment (FACE) system, the relative importance of leaf litter decomposition, fine root and fungal turnover for C incorporation into SOM was investigated. A technique using cores of soil in which a C-4 crop has been grown (delta C-13 -18.1 parts per thousand) inserted into the plantation and detritus from C-3 trees (delta C-13 -27 to -30 parts per thousand) was used to distinguish between old (native soil) and new (tree derived) soil C. In-growth cores using a fine mesh (39 mu m) to prevent in-growth of roots, but allow in-growth of fungal hyphae were used to assess contribution of fine roots and the mycorrhizal external mycelium to soil C during a period of three growing seasons (1999-2001). Across all species and treatments, the mycorrhizal external mycelium was the dominant pathway (62%) through which carbon entered the SOM pool, exceeding the input via leaf litter and fine root turnover. The input via the mycorrhizal external mycelium was not influenced by elevated CO2, but elevated atmospheric CO2 enhanced soil C inputs via fine root turnover. The turnover of the mycorrhizal external mycelium may be a fundamental mechanism for the transfer of root-derived C to SOM
    corecore