79 research outputs found

    Mixed-Initiative Creative Interfaces

    Get PDF
    Enabled by artificial intelligence techniques, we are witnessing the rise of a new paradigm of computational creativity support: mixed-initiative creative interfaces put human and computer in a tight interactive loop where each suggests, produces, evaluates, modifies, and selects creative outputs in response to the other. This paradigm could broaden and amplify creative capacity for all, but has so far remained mostly confined to artificial intelligence for game content generation, and faces many unsolved interaction design challenges. This workshop therefore convenes CHI and game researchers to advance mixed-initiative approaches to creativity support

    Binding of Elementary Bodies by the Opportunistic Fungal Pathogen Candida albicansor Soluble β-Glucan, Laminarin, Inhibits Chlamydia Trachomatisinfectivity

    Get PDF
    Microbial interactions represent an understudied facet of human health and disease. In this study, the interactions that occur between Chlamydia trachomatis and the opportunistic fungal pathogen, Candida albicans were investigated. Candida albicans is a common component of the oral and vaginal microbiota responsible for thrush and vaginal yeast infections. Normally, Candida exist in the body as yeast. However, disruptions to the microbiota create conditions that allow expanded growth of Candida, conversion to the hyphal form, and tissue invasion. Previous studies have shown that a myriad of outcomes can occur when Candida albicans interacts with pathogenic bacteria. To determine if C. trachomatis physically interacts with C. albicans, we incubated chlamydial elementary bodies (EB) in medium alone or with C. albicans yeast or hyphal forms for 1 h. Following incubation, the samples were formaldehyde-fixed and processed for immunofluorescence assays using anti-chlamydial MOMP or anti- chlamydial LPS antibodies. Replicate samples were replenished with culture medium and incubated at 35°C for 0-120 h prior to fixation for immunofluorescence analysis or collection for EB infectivity assays. Data from this study indicates that both C. trachomatis serovar E and C. muridarum EB bind to C. albicans yeast and hyphal forms. This interaction was not blocked by pre-incubation of EB with the Candida cell wall components, mannan or β-glucans, suggesting that EB interact with a Candida cell wall protein or other structure. Bound EB remained attached to C. albicans for a minimum of 5 days (120 h). Infectivity assays demonstrated that EB bound to C. albicans are infectious immediately following binding (0h). However, once bound to C. albicans, EB infectivity decreased at a faster rate than EB in medium alone. At 6h post binding, 40% of EB incubated in medium alone remained infectious compared to only 16% of EB bound to C. albicans. Likewise, pre-incubation of EB with laminarin, a soluble preparation of β-glucan, alone or in combination with other fungal cell wall components significantly decreases chlamydial infectivity in HeLa cells. These data indicate that interactions between EB and C. albicans inhibit chlamydial infectivity, possibly by physically blocking EB interactions with host cell receptors

    Depression and family support in breast cancer patients

    Get PDF
    MTS, migration and invasion assays in DCIS.COM cells that were previously transduced with scrambled control (Control) or BCL9 KD shRNA. The control cells and BCL9 KD cells were re-transduced with empty vector (EV), BCL9 overexpression (BCL9-OE) and BCL9 KD. BCL9-OE was achieved by transduction using the PCDH-BCL9 (BCL9-OE) acquired from Dr. Carrasco [11]. A Western blot analysis was performed using anti-BCL9, anti-vimentin, anti-E-cadherin antibodies, and anti-β-actin as a loading control. B MTS assay on control cells transduced with EV (control + EV), or BCL9-OE (control + BCL9-OE), BCL9-KD transduced with EV (BCL9 KD + EV), and BCL9-KD transduced with BCL9-OE (BCL9 KD + BCL9-OE). Bar graphs represent mean absorbance at 490 nm normalized to control ± standard error of the mean (SEM) (n = 6). C, D Representative images of the migration and invasion assays. Bar graph represents percent area of cells migrated (left) and invaded (right) under the membrane after 24 h. Invasion and migration were determined by ImageJ analysis of microscopic images per sample, the data are mean values normalized to control ± SEM (n = 3). E TopFlash and FopFlash reporter activity in DCIS.COM transduced as above that were either treated with Wnt3A or control conditioned medium (CM). Data represent mean ± SEM (n = 3, letters indicate statistically significant difference). (PDF 964 kb

    Isoform-specific AMPK association with TBC1D1 is reduced by a mutation associated with severe obesity

    Get PDF
    AMP-activated protein kinase (AMPK) is a key regulator of cellular and systemic energy homeostasis which achieves this through the phosphorylation of a myriad of downstream targets. One target is TBC1D1 a Rab-GTPase-activating protein that regulates glucose uptake in muscle cells by integrating insulin signalling with that promoted by muscle contraction. Ser237 in TBC1D1 is a target for phosphorylation by AMPK, an event which may be important in regulating glucose uptake. Here, we show AMPK heterotrimers containing the α1, but not the α2, isoform of the catalytic subunit form an unusual and stable association with TBC1D1, but not its paralogue AS160. The interaction between the two proteins is direct, involves a dual interaction mechanism employing both phosphotyrosinebinding (PTB) domains of TBC1D1 and is increased by two different pharmacological activators of AMPK (AICAR and A769962). The interaction enhances the efficiency by which AMPK phosphorylates TBC1D1 on its key regulatory site, Ser237. Furthermore, the interaction is reduced by a naturally occurring R125W mutation in the PTB1 domain of TBC1D1, previously found to be associated with severe familial obesity in females, with a concomitant reduction in Ser237 phosphorylation. Our observations provide evidence for a functional difference between AMPK α-subunits and extend the repertoire of protein kinases that interact with substrates via stabilisation mechanisms that modify the efficacy of substrate phosphorylation

    Binding of Elementary Bodies by the Opportunistic Fungal Pathogen Candida albicans or Soluble β-Glucan, Laminarin, Inhibits Chlamydia trachomatis Infectivity

    Get PDF
    Microbial interactions represent an understudied facet of human health and disease. In this study, the interactions that occur between Chlamydia trachomatis and the opportunistic fungal pathogen, Candida albicans were investigated. Candida albicans is a common component of the oral and vaginal microbiota responsible for thrush and vaginal yeast infections. Normally, Candida exist in the body as yeast. However, disruptions to the microbiota create conditions that allow expanded growth of Candida, conversion to the hyphal form, and tissue invasion. Previous studies have shown that a myriad of outcomes can occur when Candida albicans interacts with pathogenic bacteria. To determine if C. trachomatis physically interacts with C. albicans, we incubated chlamydial elementary bodies (EB) in medium alone or with C. albicans yeast or hyphal forms for 1 h. Following incubation, the samples were formaldehyde-fixed and processed for immunofluorescence assays using anti-chlamydial MOMP or anti- chlamydial LPS antibodies. Replicate samples were replenished with culture medium and incubated at 35°C for 0–120 h prior to fixation for immunofluorescence analysis or collection for EB infectivity assays. Data from this study indicates that both C. trachomatis serovar E and C. muridarum EB bind to C. albicans yeast and hyphal forms. This interaction was not blocked by pre-incubation of EB with the Candida cell wall components, mannan or β-glucans, suggesting that EB interact with a Candida cell wall protein or other structure. Bound EB remained attached to C. albicans for a minimum of 5 days (120 h). Infectivity assays demonstrated that EB bound to C. albicans are infectious immediately following binding (0h). However, once bound to C. albicans, EB infectivity decreased at a faster rate than EB in medium alone. At 6h post binding, 40% of EB incubated in medium alone remained infectious compared to only 16% of EB bound to C. albicans. Likewise, pre-incubation of EB with laminarin, a soluble preparation of β-glucan, alone or in combination with other fungal cell wall components significantly decreases chlamydial infectivity in HeLa cells. These data indicate that interactions between EB and C. albicans inhibit chlamydial infectivity, possibly by physically blocking EB interactions with host cell receptors

    COSMOS: COmparing Standard Maternity care with One-to-one midwifery Support: a randomised controlled trial

    Get PDF
    Background: In Australia and internationally, there is concern about the growing proportion of women giving birth by caesarean section. There is evidence of increased risk of placenta accreta and percreta in subsequent pregnancies as well as decreased fertility; and significant resource implications. Randomised controlled trials (RCTs) of continuity of midwifery care have reported reduced caesareans and other interventions in labour, as well as increased maternal satisfaction, with no statistically significant differences in perinatal morbidity or mortality. RCTs conducted in the UK and in Australia have largely measured the effect of teams of care providers (commonly 6&ndash;12 midwives) with very few testing caseload (one-to-one) midwifery care. This study aims to determine whether caseload (one-to-one) midwifery care for women at low risk of medical complications decreases the proportion of women delivering by caesarean section compared with women receiving \u27standard\u27 care. This paper presents the trial protocol in detail.Methods/design: A two-arm RCT design will be used. Women who are identified at low medical risk will be recruited from the antenatal booking clinics of a tertiary women\u27s hospital in Melbourne, Australia. Baseline data will be collected, then women randomised to caseload midwifery or standard low risk care. Women allocated to the caseload intervention will receive antenatal, intrapartum and postpartum care from a designated primary midwife with one or two antenatal visits conducted by a \u27back-up\u27 midwife. The midwives will collaborate with obstetricians and other health professionals as necessary. If the woman has an extended labour, or if the primary midwife is unavailable, care will be provided by the back-up midwife. For women allocated to standard care, options include midwifery-led care with varying levels of continuity, junior obstetric care and community based general medical practitioner care. Data will be collected at recruitment (self administered survey) and at 2 and 6 months postpartum by postal survey. Medical/obstetric outcomes will be abstracted from the medical record. The sample size of 2008 was calculated to identify a decrease in caesarean birth from 19 to 14% and detect a range of other significant clinical differences. Comprehensive process and economic evaluations will be conducted.Trial registration: Australian New Zealand Clinical Trials Registry ACTRN012607000073404.<br /

    Expression profiling of in vivo ductal carcinoma in situ progression models identified B cell lymphoma-9 as a molecular driver of breast cancer invasion

    Get PDF
    Abstract Introduction There are an estimated 60,000 new cases of ductal carcinoma in situ (DCIS) each year. A lack of understanding in DCIS pathobiology has led to overtreatment of more than half of patients. We profiled the temporal molecular changes during DCIS transition to invasive ductal carcinoma (IDC) using in vivo DCIS progression models. These studies identified B cell lymphoma-9 (BCL9) as a potential molecular driver of early invasion. BCL9 is a newly found co-activator of Wnt-stimulated β-catenin-mediated transcription. BCL9 has been shown to promote progression of multiple myeloma and colon carcinoma. However BCL9 role in breast cancer had not been previously recognized. Methods Microarray and RNA sequencing were utilized to characterize the sequential changes in mRNA expression during DCIS invasive transition. BCL9-shRNA knockdown was performed to assess the role of BCL9 in in vivo invasion, epithelial-mesenchymal transition (EMT) and canonical Wnt-signaling. Immunofluorescence of 28 patient samples was used to assess a correlation between the expression of BCL9 and biomarkers of high risk DCIS. The cancer genome atlas data were analyzed to assess the status of BCL9 gene alterations in breast cancers. Results Analysis of BCL9, by RNA and protein showed BCL9 up-regulation to be associated with DCIS transition to IDC. Analysis of patient DCIS revealed a significant correlation between high nuclear BCL9 and pathologic characteristics associated with DCIS recurrence: Estrogen receptor (ER) and progesterone receptor (PR) negative, high nuclear grade, and high human epidermal growth factor receptor2 (HER2). In vivo silencing of BCL9 resulted in the inhibition of DCIS invasion and reversal of EMT. Analysis of the TCGA data showed BCL9 to be altered in 26 % of breast cancers. This is a significant alteration when compared to HER2 (ERBB2) gene (19 %) and estrogen receptor (ESR1) gene (8 %). A significantly higher proportion of basal like invasive breast cancers compared to luminal breast cancers showed BCL9 amplification. Conclusion BCL9 is a molecular driver of DCIS invasive progression and may predispose to the development of basal like invasive breast cancers. As such, BCL9 has the potential to serve as a biomarker of high risk DCIS and as a therapeutic target for prevention of IDC
    • …
    corecore