47 research outputs found

    Time-evolving measures and macroscopic modeling of pedestrian flow

    Full text link
    This paper deals with the early results of a new model of pedestrian flow, conceived within a measure-theoretical framework. The modeling approach consists in a discrete-time Eulerian macroscopic representation of the system via a family of measures which, pushed forward by some motion mappings, provide an estimate of the space occupancy by pedestrians at successive time steps. From the modeling point of view, this setting is particularly suitable to treat nonlocal interactions among pedestrians, obstacles, and wall boundary conditions. In addition, analysis and numerical approximation of the resulting mathematical structures, which is the main target of this work, follow more easily and straightforwardly than in case of standard hyperbolic conservation laws, also used in the specialized literature by some Authors to address analogous problems.Comment: 27 pages, 6 figures -- Accepted for publication in Arch. Ration. Mech. Anal., 201

    Pedestrian flows in bounded domains with obstacles

    Full text link
    In this paper we systematically apply the mathematical structures by time-evolving measures developed in a previous work to the macroscopic modeling of pedestrian flows. We propose a discrete-time Eulerian model, in which the space occupancy by pedestrians is described via a sequence of Radon positive measures generated by a push-forward recursive relation. We assume that two fundamental aspects of pedestrian behavior rule the dynamics of the system: On the one hand, the will to reach specific targets, which determines the main direction of motion of the walkers; on the other hand, the tendency to avoid crowding, which introduces interactions among the individuals. The resulting model is able to reproduce several experimental evidences of pedestrian flows pointed out in the specialized literature, being at the same time much easier to handle, from both the analytical and the numerical point of view, than other models relying on nonlinear hyperbolic conservation laws. This makes it suitable to address two-dimensional applications of practical interest, chiefly the motion of pedestrians in complex domains scattered with obstacles.Comment: 25 pages, 9 figure

    The Coevolution of Phycobilisomes: Molecular Structure Adapting to Functional Evolution

    Get PDF
    Phycobilisome is the major light-harvesting complex in cyanobacteria and red alga. It consists of phycobiliproteins and their associated linker peptides which play key role in absorption and unidirectional transfer of light energy and the stability of the whole complex system, respectively. Former researches on the evolution among PBPs and linker peptides had mainly focused on the phylogenetic analysis and selective evolution. Coevolution is the change that the conformation of one residue is interrupted by mutation and a compensatory change selected for in its interacting partner. Here, coevolutionary analysis of allophycocyanin, phycocyanin, and phycoerythrin and covariation analysis of linker peptides were performed. Coevolution analyses reveal that these sites are significantly correlated, showing strong evidence of the functional and structural importance of interactions among these residues. According to interprotein coevolution analysis, less interaction was found between PBPs and linker peptides. Our results also revealed the correlations between the coevolution and adaptive selection in PBS were not directly related, but probably demonstrated by the sites coupled under physical-chemical interactions

    A hierarchy of heuristic-based models of crowd dynamics

    Get PDF
    International audienceWe derive a hierarchy of kinetic and macroscopic models from a noisy variant of the heuristic behavioral Individual-Based Model of Moussaid et al, PNAS 2011, where the pedestrians are supposed to have constant speeds. This IBM supposes that the pedestrians seek the best compromise between navigation towards their target and collisions avoidance. We first propose a kinetic model for the probability distribution function of the pedestrians. Then, we derive fluid models and propose three different closure relations. The first two closures assume that the velocity distribution functions are either a Dirac delta or a von Mises-Fisher distribution respectively. The third closure results from a hydrodynamic limit associated to a Local Thermodynamical Equilibrium. We develop an analogy between this equilibrium and Nash equilibia in a game theoretic framework. In each case, we discuss the features of the models and their suitability for practical use

    Comparison of outcome and characteristics between 6343 COVID-19 patients and 2256 other community-acquired viral pneumonia patients admitted to Dutch ICUs

    Get PDF
    Purpose: Describe the differences in characteristics and outcomes between COVID-19 and other viral pneumonia patients admitted to Dutch ICUs. Materials and methods: Data from the National-Intensive-Care-Evaluation-registry of COVID-19 patients admitted between February 15th and January 1th 2021 and other viral pneumonia patients admitted between January 1st 2017 and January 1st 2020 were used. Patients' characteristics, the unadjusted, and adjusted in-hospital mortality were compared. Results: 6343 COVID-19 and 2256 other viral pneumonia patients from 79 ICUs were included. The COVID-19 patients included more male (71.3 vs 49.8%), had a higher Body-Mass-Index (28.1 vs 25.5), less comorbidities (42.2 vs 72.7%), and a prolonged hospital length of stay (19 vs 9 days). The COVID-19 patients had a significantly higher crude in-hospital mortality rate (Odds ratio (OR) = 1.80), after adjustment for patient characteristics and ICU occupancy rate the OR was respectively 3.62 and 3.58. Conclusion: Higher mortality among COVID-19 patients could not be explained by patient characteristics and higher ICU occupancy rates, indicating that COVID-19 is more severe compared to other viral pneumonia. Our findings confirm earlier warnings of a high need of ICU capacity and high mortality rates among relatively healthy COVID-19 patients as this may lead to a higher mental workload for the staff. (c) 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/)

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
    corecore