1,668 research outputs found

    Enhanced quality factors and force sensitivity by attaching magnetic beads to cantilevers for atomic force microscopy in liquid

    Full text link
    Dynamic-mode atomic force microscopy (AFM) in liquid remains complicated due to the strong viscous damping of the cantilever resonance. Here we show that a high-quality resonance (Q>20) can be achieved in aqueous solution by attaching a microgram-bead at the end of the nanogram-cantilever. The resulting increase in cantilever mass causes the resonance frequency to drop significantly. However, the force sensitivity --- as expressed via the minimum detectable force gradient --- is hardly affected, because of the enhanced quality factor. Via the enhancement of the quality factor, the attached bead also reduces the relative importance of noise in the deflection detector. It can thus yield an improved signal-to-noise ratio when this detector noise is significant. We describe and analyze these effects for a set-up which includes magnetic actuation of the cantilevers and which can be easily implemented in any AFM system that is compatible with an inverted optical microscope.Comment: The following article has been accepted by Journal of Applied Physics. After it is published, it will be found at http://jap.aip.org

    Linear and field-independent relation between vortex core state energy and gap in Bi2Sr2CaCu2O8+d

    Get PDF
    We present a scanning tunneling spectroscopy study on quasiparticle states in vortex cores in Bi2Sr2CaCu2O8+δ. The energy of the observed vortex core states shows an approximately linear scaling with the superconducting gap in the region just outside the core. This clearly distinguishes them from conventional localized core states and is a signature of the mechanism responsible for their discrete appearance in high-temperature superconductors. The energy scaling of the vortex core states also suggests a common nature of vortex cores in Bi2Sr2CaCu2O8+δ and YBa2Cu3O7-δ. Finally, these states do not show any dependence on the applied magnetic field between 1 and 6 T

    Strategies for estimating human exposure to mycotoxins via food

    Get PDF
    In this review, five strategies to estimate mycotoxin exposure of a (sub-) population via food, including data collection, are discussed with the aim to identify the added values and limitations of each strategy for risk assessment of these chemicals. The well-established point estimate, observed individual mean, probabilistic and duplicate diet strategies are addressed, as well as the emerging human biomonitoring strategy. All five exposure assessment strategies allow the estimation of chronic (long-term) exposure to mycotoxins, and, with the exception of the observed individual mean strategy, also acute (short-term) exposure. Methods for data collection, i.e. food consumption surveys, food monitoring studies and total diet studies are discussed. In food monitoring studies, the driving force is often enforcement of legal limits, and, consequently, data are often generated with relatively high limits of quantification and targeted at products suspected to contain mycotoxin levels above these legal limits. Total diet studies provide a solid base for chronic exposure assessments since they provide mycotoxin levels in food based on well-defined samples and including the effect of food preparation. Duplicate diet studies and human biomonitoring studies reveal the actual exposure but often involve a restricted group of human volunteers and a limited time period. Human biomonitoring studies may also include exposure to mycotoxins from other sources than food, and exposure to modified mycotoxins that may not be detected with current analytical methods. Low limits of quantification are required for analytical methods applied for data collection to avoid large uncertainties in the exposure due to high numbers of left censored data, i.e. with levels below the limit of quantification

    Where’s the Community in Community, Work and Family? A Community-based Capabilities Approach

    Get PDF
    Community is a key dimension in the work–family interface as highlighted by the recent Covid-19 pandemic. Yet it is critically understudied by much work–family scholarship. We highlight and address crucial barriers preventing the integration of the community concept, developing an interdisciplinary community-based capabilities approach. This approach conceptualizes three components of community: local relationships, local policies and locality (place, space and scale). Local relationships include formal and informal relationships, networks, and a sense of belonging. Dependent on the broader socio-economic context, local policies and services can provide important resources for managing these relationships and work–life situations more generally. These relationships and policies are embedded in specific geographical localities, shaping and being shaped by social action. This interdisciplinary conceptualization of community allows relational, spatial, structural and temporal aspects of community to be integrated into a more broadly applicable conceptual approach. We base this approach on the capability approach, which allows for a pluralistic work–life framework of what individuals value and do. We further argue for a conceptualization of family as community, moving towards a work–community interface. The resulting conceptual approach is useful for explaining work–life processes for individuals with and without care responsibilities, and offers a new framework for studying the social trends intensely and rapidly highlighted by the COVID-19 pandemic

    Poly(2-cyclopropyl-2-oxazoline): from rate acceleration by Cyclopropyl to Thermoresponsive properties

    Get PDF
    The synthesis and microwave-assisted living cationic ring-opening polymerization of 2-cyclopropyl-2-oxazoline is reported revealing the fastest polymerization for an aliphatic substituted 2-oxazoline to date, which is ascribed to the electron withdrawing effect of the cyclopropyl group. The poly(2-cyclopropyl-2-oxazoline) (pCPropOx) represents an alternative thermo-responsive poly(2-oxazoline) with a reversible critical temperature close to body temperature. The cloud point (CP) of the obtained pCPropOx in aqueous solution was evaluated in detail by turbidimetry, dynamic light scattering (DLS) and viscosity measurements. pCPropOx is amorphous with a significantly higher glass transition temperature (T(g) similar to 80 degrees C) compared to the amorphous poly(2-n-propyl-2-oxazoline) (pnPropOx) (T(g) similar to 40 degrees C), while poly(2-isopropyl-2-oxazoline) piPropOx is semicrystalline. In addition, a pCPropOx comb polymer was prepared by methacrylic acid end-capping of the living cationic species followed by RAFT polymerization of the macromonomer. The polymer architecture does not influence the concentration dependence of the CP, however, both the CP and T(g) of the comb polymer are lower due to the increased number of hydrophobic end groups

    Lijphart vs Lijphart

    Get PDF

    Optical shield: measuring viscosity of turbid fluids using optical tweezers

    Get PDF
    The viscosity of a fluid can be measured by tracking the motion of a suspended micron-sized particle trapped by optical tweezers. However, when the particle density is high, additional particles entering the trap compromise the tracking procedure and degrade the accuracy of the measurement. In this work we introduce an additional Laguerre–Gaussian, i.e. annular, beam surrounding the trap, acting as an optical shield to exclude contaminating particles

    Imaging the essential role of spin-fluctuations in high-Tc superconductivity

    Get PDF
    We have used scanning tunneling spectroscopy to investigate short-length electronic correlations in three-layer Bi2Sr2Ca2Cu3O(10+d) (Bi-2223). We show that the superconducting gap and the energy Omega_dip, defined as the difference between the dip minimum and the gap, are both modulated in space following the lattice superstructure, and are locally anti-correlated. Based on fits of our data to a microscopic strong-coupling model we show that Omega_dip is an accurate measure of the collective mode energy in Bi-2223. We conclude that the collective mode responsible for the dip is a local excitation with a doping dependent energy, and is most likely the (pi,pi) spin resonance.Comment: 4 pages, 4 figure
    • …
    corecore