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SUMMARY

Introduction

PostNL is a large parcel delivery company in Benelux. Their main business activity is delivering parcels
from origin to destination every day. First parcels are collected at customer sites and brought to nearby
sorting centers, called depots. There the parcels are sorted and transported to depots nearby the parcel
destinations, called inter transport. PostNL uses roll cages, which are reusable transport, to efficiently
carry and move parcels in this process. However, the parcel deliveries are imbalanced. I.e. some regions
in PostNL’s network have larger parcel inflow than parcel outflow, or the opposite. As a result, in the long
run, some locations run out of roll cages and some develop excess roll cage inventory. Therefore, PostNL
rebalances the system each day by determining the number of empty roll cages that flow between each pair
of locations, aiming at minimizing transport costs, minimizing (roll cage) overage at depots and ensuring
sufficient roll cage supply at locations.

Finding the optimal solution to this problem is difficult for several reasons. Firstly, demand at customers
is random. Also, PostNL uses two types of transport orders for repositioning. Immediate orders are expensive
but executed the same day. Structural orders are cheap, but need to planned three weeks ahead. Furthermore,
in case of shortage at a location, costly emergency transport is arranged from a nearby location. Lastly,
the number of customer locations is large. In the current control policy, customers are replenished using
structural orders. Each day, first this structural planning is followed as much as possible before determining
the rebalancing between depots, for which immediate orders are used. In each time period and at each
depot, only a very small number of overage roll cages is allowed in this policy. This number is also called
the maximum surplus level or S. There are buffer locations in the network, which have large inventory (and
no overage restriction) to ensure that this control policy always works. This control of the between-depot
repositioning can potentially be improved. Namely, there is a pattern of decreasing roll cage demand
at depots from Monday until Sunday. Therefore, when choosing low S, roll cages must be repositioned
to buffers throughout the week, and brought back on Monday, which is costly. Concluding, the optimal
solution is affected by several factors and there is reason to believe that the current control policy can be
improved. Therefore, in this work, we aim to develop a simulation model that expresses the long term
repositioning costs and inventory levels at depots as a function of the control policy. This model is used to
compare the S-level in the current control policy to other S-levels in terms of resulting costs and inventory
levels.

Decision process model

The main idea of the model is the following. We first mathematically express the roll cage movements
between locations in one arbitrary period (day), leading to the starting inventory of next period. That is,
we define the inventory evolution. These movements are a result of the repositioning decision and random
parcel delivery demands (corresponding to PostNL’s collection and inter transport processes). We then
define the costs corresponding to these movements and the objectives, which are the expected per period
costs and the expected mean inventory level at normal (non-buffer) depots. By providing the set of rules
(decision policy) by which PostNL determines the repositioning decision in each period, we model the
current decision policy. In this way we obtain a model that evaluates the long term repositioning costs and
inventory levels as a function of a decision policy and random events for a provided time horizon.

We formalize the current decision policy as follows. Against some costs, PostNL plans structural
orders, which make the repositioning fee between two locations smaller on a specific weekday (Monday,
Tuesday,..., Sunday) for a long period of time. We assume the set of structural orders are fixed for each
weekday. PostNL only repositions roll cages to a customer when the customer has a planned structural
order. The company employs a heuristic base stock policy, including a fixed safety stock margin, and
specific corrective rules in case the order origin has insufficient inventory to execute the order. PostNL bases
the repositioning between depots on each day on the starting inventory, the determined orders to customers,



the roll cage inflow from collection, the inter transport outflow (demand), and a set-up inventory for the
sorting machine. For each depot, given these quantities, they calculate the overage and restrict this overage
to become between zero and S by repositioning between depots, aiming at minimizing costs. Currently
this is done manually, which make it hard to replicate. We translate this to a mathematical optimization
problem and solve optimally with commercial software Gurobi.

Simulation experiment with company data

By establishing the probability distributions for the random events (collection quantities at customers), and
implementing the model in a Python program, we can simulate the process for a number of periods and
obtain results. We include 28 depots and 1694 customers in our model. To obtain probability distribution
functions (PDFs) of the collection quantity for each customer we use seven months of company data of
the collection process: the number of roll cages that were collected on each date, from which customer,
to which depot. To prevent distributions that have little data for the whole range of possible outcomes,
we do not fit a distribution for each individual customer. Instead, we divide the data in five groups based
on how large customers are in terms of total collection quantity, and assume that all customers of a group
show the same collection behaviour. For each of these customer groups, we fit probability distributions
of the collection quantity for each weekday. Hence, we obtain PDFs for the collection quantity at each
customer on each weekday. Also, for each customer, the fraction of its collection that is brought to each
depot is derived from this data. Then we need events for the number of roll cages (loaded with parcels)
that flow between depots. The outflow at a depot in a period mostly depends on how many parcels are
received from collection. We use data of these loaded roll cage flows between depots to determine the roll
cage outflow at each depot in each time period as a function of how much collection this depot received.
Also, the fraction of roll cage outflow that flows into each other depot is derived from this data.

To obtain results on the long term expected costs and long term expected inventory levels at depots,
we simulate the system multiple times in which we sample random events using the PDFs we fitted. We
simulate the system m = 42 periods to obtain one outcome for each objective, and we perform n = 10 of
such runs to obtain multiple independent outcomes for the objectives. Based on these n = 10 outcomes we
can provide an estimate for each objective, including approximate confidence interval.

Discussion

We establish a model of the decision process. We show that our simulation experiment yields several
outcomes of using the current decision policy. Repositioning flows of individual depots, per period costs
of the several costs components, and inventory levels at locations are generated for specific points in time
in the simulation and as long term expected values. The power of our tool is primarily in the ability to
compare different decision policies. To illustrate this strength, we test alternative decision policies, which
differ in the chosen S-level. We show that the expected inventory at depots is increasing in S, and the
expected per period costs are decreasing in S. E.g., by changing S from 180 to 360, PostNL could reduce its
total repositioning costs by 4.0% against an increase in inventory at depots of 7.9%, which is a significant
cost saving for the company. Moreover, the model has a broad scope of the process, enabling the analysis
of several other parameters like the effect of the safety stock level at customers and the set of structural
orders on repositioning costs. Future work could, for instance, aim at optimizing the structural planning
as the largest part of the repositioning is planned ahead and structural orders are significantly cheaper than
immediate orders.



A SIMULATION MODEL OF EMPTY TRANSPORT ITEM REPOSITIONING IN A PARCEL
DELIVERY SYSTEM

D.M. (Derek) Hoogenboom

1 INTRODUCTION

Companies in the parcel delivery industry, a branch of the logistic service industry, provide the service
to transport parcels from origin to destination for customers. Customers of parcel delivery companies
are mostly e-commerce companies that need to send their products to their customers, which mostly are
consumers. The main challenge for parcel delivery companies is processing high volumes of parcels and
at the same time realizing short delivery time, reliable delivery and attractive pricing, as these are key
components in customer decision making. The market is therefore characterized by high pressure on
operational excellence, especially because of increased competition resulting from the enormous growth
of e-commerce in the last decade.

Operating a parcel delivery system involves the physical movement of a large number of parcels from
several origins to several destinations in an area. To efficiently carry and move the parcels, roll container
trolleys, a.k.a. roll cages, are used to stack parcels on. These roll cages carry multiple parcels at once, and
are easily moved into trucks or within facilities. A common problem of using such (reusable) transport
items in a logistic system, is that they need to be repositioned empty after they have been used for a loaded
shipment, because the loaded shipments are imbalanced. That is, areas in the network have more outgoing
loaded shipments than incoming loaded shipments (or the opposite), which leads to either accumulation
or shortage of these transport items. Operators of the logistic service must determine how empty transport
items are transported between locations to ensure availability and minimize costs. This problem occurs in
many domains of the logistic service industry, e.g. in freight transport with trucks (Erera et al. 2009) and
in sea transport with containers (Song and Dong 2015). In this research we study the design of a model
for roll cage repositioning in a parcel system. This research is done in close collaboration with PostNL,
a large courier in Benelux, which has expressed the need for tools to design and evaluate new control
policies for the repositioning of roll cages.

PostNL’s roll cage repositioning process is a daily repeating process consisting of the steps ”collection”,
”inter transport” and ”repositioning”. First, parcels are collected at customer sites using trucks. Here, these
parcels are stacked on either roll cages or on other transport items, like pallets, before they are moved into
trucks. The trucks bring the parcels to nearby sorting centers, called depots. Then, during the inter transport
step, the parcels are unloaded from the transport items and fed to a sorting machine. This machine sorts
the parcels based on destination area, whereafter they are all placed on roll cages. These sorted parcels
on roll cages are moved into trucks and transported to a depot in the destination area. Hence, in the inter
transport phase, a depot first sends roll cages (with sorted parcels) to all depots, and then receives roll cages
from all depots. In the repositioning step, first the parcels are unloaded from the roll cages and the parcels
are placed in a van for the last-mile delivery to the destination. Then, PostNL repositions the empty roll
cages from the depots to customers and to other depots to rebalance the system. Namely, in this process
it is important that there are enough roll cages at the customer sites to enable the collection process and
at depots to enable the inter transport process. However, in the long run, customers naturally run out of
roll cages and depots may have increasing or decreasing roll cage inventory because of an imbalance in
the inflow and outflow of roll cages. Figure 1 provides an overview of this process.

This repositioning is done by placing transport orders: booking a truck to transport a number of empty
roll cages from an origin to a destination at some point in time. There are two main types of transport
orders, abbreviated as orders: immediate orders and structural orders. An immediate order can be booked
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Figure 1: The roll cage repositioning process of PostNL.

for the same day and is relatively expensive. A structural order needs to booked one week in advance,
recur for a minimum of three weeks and is relatively cheap. Furthermore, the costs of an order increase in
the travel distance (fuel costs), travel time and the number of roll cages in the order. The company aims at
minimizing repositioning costs, minimize redundant roll cages at depots and to meet process requirements,
such as ensuring enough roll cage inventory at locations. Hence, they face a sequential decision problem.
Each day they must decide, how much roll cages are transported from where to where and with which
order type. Next to the cost structure and different order types, there are several complicating factors in
this problem. The number of roll cages that are needed at customers for collection is typically not known
in advance. Therefore, future inventories at locations are uncertain and each day the repositioning decision
is subject to these inventories. Moreover, when a location is not sufficiently supplied with roll cages (e.g.,
a customer needs more roll cages for the collection of parcels than it has on stock), emergency transport
is arranged from a nearby location. Also, there are over a thousand customers, which complicates the
planning.

Currently, PostNL repositions roll cages to customers using structural orders, because there is a large
number of customers and structural orders are relatively cheap. Each day PostNL sticks to this planning
as much as possible and creates immediate orders to customers if this structural planning is not feasible.
Then, given these customer orders, PostNL checks how much roll cages are left at the depots and creates
immediate orders such that each depot ends up with enough roll cages for the upcoming inter transport
process. Each day period and at each depot, only a very small number of overage roll cages is allowed in
this policy. This number is also called the maximum surplus level or S. There are buffer locations in the
network, which have large inventory (and no overage restriction), to ensure that this control policy always
works.

Future needs at depots are not considered in this control policy, and allowing only a small surplus at
depots may increase future repositioning costs if future needs are different from current needs. Namely,
PostNL experiences a pattern of decreasing roll cage demand at depots from Monday until Sunday. Therefore,
when choosing for low S, roll cages are repositioned to buffers throughout the week, and brought back
on Monday, which is costly. Moreover, it is unlikely that this control policy minimizes costs, because it
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does not consider several opportunities for decreasing the costs of repositioning on an arbitrary day. For
example, it might be beneficial to deviate from the planning of orders to customers because it happens
to be the case that a depot nearby a customer has excess roll cages (through randomness of the system).
Another reason why analyzing the control policy could be beneficial is that by first determining the orders
to customers each day before determining orders between depots, the orders between depots might become
more expensive, because some depots might need supply that would not be needed if the depot need was
taken into account right away. Hence, PostNL wonders how the current control and design of the process
can be evaluated and possibly be improved. Therefore, they aim to design a mathematical model of the
system.

The literature on empty repositioning is rich: numerous application domains and problem types are
addressed. Some, mostly early, works focus on the (basic) setting of deterministic supply and demand,
and a single decision moment for a fixed planning horizon. They utilize linear programming techniques to
finding cost optimal assignments for transport items to origin-destination (O/D) pairs in a transport network.
Examples of such studies are White and Bomberault (1969), Shen and Khoong (1995), and (Vogel et al.
2014; Neumann-Saavedra et al. 2016) who consider rail car repositioning, sea container repositioning, and
repositioning in bike sharing systems, respectively. A large stream of research concentrates on settings
with stochasticity in supply and demand, and dynamic decision environments as these characteristics are
often encountered in real-world problems. Most of the studies with this focus consider problems in which
there are per-unit costs associated with unmet demand, and (holding) overage. Several approaches are
proposed. Jordan and Turnquist (1983) formulate a stochastic transportation problem in a railway wagon
repositioning setting, in which decisions need to be made in a rolling time horizon, using the mean and
variance of demand and supply. They solve the formulation using a Frank-Wolfe algorithm. Crainic et al.
(1993) develop a Two-Stage approach for a dynamic, stochastic inland (maritime) container distribution
problem. In the first stage, the problem is solved assuming deterministic parameters. In the second stage,
the decisions are adjusted such that expected costs related to random realizations of demand and supply
are accounted for. Yan et al. (2017) study repositioning in a bike sharing system. They generate a number
of demand scenarios and solve a multi-scenario mathematical program.

In these studies, unmet demand at one location does not imply (emergency) transport from other
locations, which is the case in our roll cage repositioning problem. Also, it is hard to use above models,
because we deal with a large number of customers and transport options of different prices. To deal with
modeling specific environment characteristics, simulation models have been very popular to assess overall
impact of control policies in problems in practice (Dejax and Crainic 1987). One such example is Ghosh
et al. (2017), who define a bike repositioning problem as Markov Decision Process and obtain solutions by
repeatedly solving an MILP. They test the performance of this method using a simulation model. Dong and
Song (2009) propose a simulation model for a maritime logistic system to test a customized repositioning
policy. Since we deal with several special features, we choose to design a simulation model of the roll
cage repositioning problem to provide a practical and adequate tool.

The aim of this work is to design a simulation model of this decision process that can support the
optimization of the process design and control. Specifically, we aim to model the long term repositioning
costs and long term inventory levels at depots as a function of the control policy and the process design.
The ultimate objective is to minimize both, but the costs objective has priority over the inventory objective
as precise costs of inventory is out of scope. To this end, we use our model to analyze the effect of the
maximum surplus level (S) in the control policy on both objectives.

2 DECISION PROCESS MODEL

In this section, the roll cage repositioning decision process is elaborated in more detail and a model of it is
introduced. We want to model the effect of control policies on long term repositioning costs and roll cage
inventories at depots in this process. Therefore, the main idea of the model is the following. Firstly, roll
cages move between locations in each period of a time horizon, explained in Subsection 2.1. Secondly,
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we mathematically express the roll cage movements (i.e. inventory evolution) in the different steps of a
single period in Subsection 2.2. These include movements resulting from random events and movements
resulting from the repositioning decision. We then define the repositioning costs corresponding to these
movements and the objective values of this model (Subsection 2.3). Lastly, in Subsection 2.4, we define
how decisions are currently taken, which we will call the current decision policy. In this way we obtain a
model that can evaluate the long term repositioning costs and inventory levels as a function of a decision
policy for this decision process. A list of the notation that we introduce in this section can be found in
appendix A.

2.1 Model structure

In this process roll cages move over a network of locations at various points in time. Let the set of locations
i be defined as L . This set consists of a set of customers C and a set of depots D . At some depots, there
is additional storage space for roll cages. These depots are also called buffer locations and let the set of
buffer location be denoted by B, where B ⊆ D . The depots that are not buffer locations (D \B) are also
called normal depots.

On a high level, the roll cage repositioning process consists of three steps repeating every 24 hours, in
which roll cages move over the network and costs are incurred. These steps are repositioning, collection
and inter transport, which roughly take place between 08.00-12.00 o’clock, 12.00-23.00 o’clock and 20.00-
08.00 o’clock, respectively. Hence, one iteration of the process takes place over two calendar days. It is
convenient to define time buckets such that all events of one iteration of the process belong to a single time
period. Hence, in the model a period starts at 08.00 just before repositioning and ends at 07.59 after inter
transport. Let T denote the set {0,1,2, ..., |T |−1} of periods t. The movement of roll cages is subject
to a week pattern, driven by parcel demand dynamics. Hence, we distinct between different days in the
week, which is modelled by the set W = {Mo,Tu,We,T h,Fr,Sa,Su} of weekdays w. Figure 2 shows the
difference between the real world (calendar) time scheme and the modelled scheme of time.

By modelling the roll cage movements between locations in each step, we model the evolution of
inventory in a single period. Specifically, the process starts at t = 0 and w = Mo. The roll cage inventory at
the beginning of period t at location i is denoted by rt

i . Then, the inventory at locations is updated in each
step, whereafter the process moves to the next period t +1, and the next weekday and thus we obtain rt+1

i .
The process stops when t = |T |. Also, we define the costs in each of the steps as a function of these roll
cage movements. Repeating this for multiple periods, we obtain a model for long term inventory levels and
costs. In the repositioning step a decision is made using a decision policy, aiming at reaching objectives.

Figure 2: The difference between the real world time scheme and the time scheme of the model.
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2.2 Inventory evolution

2.2.1 Collection

Every day from 12.00 - 23.00 o’clock, parcels are collected at pick-up locations and brought to depots using
trucks. Most of these pick-up locations are customer sites, others are hubs to which small (web) shops
and individuals bring their parcels themselves. In this paper all these pick-up locations will be viewed and
referred to as customers. To efficiently carry and move the parcels into the truck, customers use big roll
cages, pallets, small roll cages, no transport items (loose loaded) or a combination of these. However, most
customers only use one type of transport item. In this study, big roll cages are referred to as roll cages,
since we focus on this type of equipment. All other transport items will be called pallets, since we only
need to distinguish between the use of roll cages and the use of other transport items.

In each period, at each customer a number of roll cages is collected. Let c out rct
i denote the roll cage

collection quantity of customer i in period t. We also need to model the flow of pallet collection, because
this determines how many parcels flow into depots. This, in turn, determines the roll cage need at depots
since roll cages are needed to process those parcels after the sorting. The collection of pallets is measured
in number of roll cage equivalents. Let c out palt

i denote the pallet collection quantity of customer i in
period t. The variables c out rct

i and c out palt
i are typically not known in advance and depend on factors

like the day of the week, discounts at the customer, season and competitor prices. Therefore, we model
these variables as random variables with known probability distribution function (PDF). In Section 3 we
elaborate on how we establish probability distributions for these variables for PostNL’s problem instance.

All collected parcels are transported to one of the depots, which causes an inflow of roll cages and
pallets. This is modelled by the variables c in rct

i and c in palt
i , which denote the roll cage collection

inflow at depot i in period t and the pallet collection inflow at depot i in period t, respectively. Usually, the
collection of a customer i is brought to the nearest depot to keep the associated transportation costs low.
This is not always the case, because other objectives, such as ensuring equal spread of the collection inflow
over the depots, also play a role. We assume that the roll cage collection c out rct

i at customer i flows into
each depot j according to a fixed fraction (independent of the weekday). The same goes for the fraction of
c out palt

i at customer i that flows into each depot j. Hence, when we have the collection outflow variables
for each customer in period t and these fractions, we obtain the collection inflow variables c in rct

i and
c in palt

i for each depot in period t. In Section 3, we elaborate on how we obtain these fractions for each
customer/depot pair for both roll cages and pallets, for the problem instance of PostNL.

Since c out rct
i are random variables, it can occur that customers run out of roll cages. If that happens,

an emergency order is initiated from the nearest depot that has sufficient roll cage inventory to supply
the deficit at the customer. Let et

i j denote the emergency order quantity from location i to location j in
period t. Such a shortage is revealed at the start of the collection step, since at that moment all c out rct

i
are revealed. Hence, et

i j is determined after the repositioning step in period t and thus not part of the
repositioning decision.

Figure 3 provides an overview of the model of the collection process. It shows that customer i has
roll cage collection and pallet collection in each period t and these are sampled from from a probability
distribution. For both roll cages and pallets, according to a fraction for each depot, these are divided over
the depots. Using this notation of the roll cage flows, the roll cage inventory change in the collection step
is given by the expression

−c out rct
i + c in rct

i + ∑
j∈L

(et
ji − et

i j) ∀i ∈ L ,∀t ∈ T .

2.2.2 Inter transport

In the inter transport step roll cages move between depots, because at each depot collected parcels are
sorted, placed on a roll cage and transported to a destination depot. The sorting of the parcels roughly takes

5



Figure 3: The model of the collection process.

place between 20.00-23.00 o’clock, in which collected parcels are unloaded from their transport item and
fed to the sorting machine. The sorting machine redirects the parcels to the outflow arm corresponding to
the destination depot of the parcel. At the end of these outflow arms, the parcels are all placed on roll
cages. When a roll cage is full it is moved into a truck and replaced by a new empty roll cage. This new
roll cage is taken from the roll cage inventory at the depot, which partly consists of the roll cage inflow
from the collection process. Note that there is a minimally required inventory of roll cages at a depot
to start the sorting process, since at each outflow arm of the machine empty roll cages are needed. This
sorting machine set-up inventory is called M. From 20.00-08.00 the roll cages are moved into trucks and
transported to the destination depot of the roll cages. In some cases the destination depot is the collection
depot, in this case no transport is needed.

Again, we aim to model the roll cage flows to enable the tracking of inventories at locations. Let
d outt

i be the number of roll cages that flow out of depot i in period t and d int
i be the number of roll

cages that flow into depot i in period t as a result of the inter transport process. d outt
i depends on the

parcel volume that needs to be sorted at depot i in period t. The parcel volume that needs to be sorted on
a day is subject to the collected parcel volume of that day and of the collected parcel volume of the day
before. Namely, sometimes not all parcels that are collected on a day can be sorted, so they are sorted
the day after. Therefore, we assume that d outt

i at depot i in period t is a linear function of the collection
inflow of that period (c in rct

i and c in palt
i ) and the collection inflow of previous period (c in rct−1

i and
c in palt−1

i ). Hence,

d outt
i = β0 +β1 · c in rct

i +β2 · c in palt
i +β3 · c in rct−1

i +β4 · c in palt−1
i .

In Section 3, we explain how we fit values for β0,β1,β2,β3 and β4 for the problem instance of PostNL,
using their data. Each of the d outt

i roll cages at depot i flows into a certain depot j according to a fixed
fraction for each pair of depots i and j. For the problem instance of PostNL, these fractions are derived
from data, which we explain in Section 3. Hence, with all d outt

i variables and these fractions we obtain
all d int

i variables in each period t. Then, using the established roll cage flows in the inter transport step,
the inventory change of this step is formulated as:

−d outt
i +d int

i ∀i ∈ L ,∀t ∈ T .

2.2.3 Repositioning

In the repositioning step, PostNL moves empty roll cages between locations to ensure the availability of roll
cages for the upcoming collection and inter transport processes. Around 08.00 o’clock all trucks from the
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preceding inter transport process have arrived at the destination depot, where the roll cages are unloaded to
sort the parcels a second time for last-mile delivery in vans (without roll cages). At this moment a team of
supply chain planners observe the roll cage inventory at each location in the network and makes a plan for
the repositioning of empty roll cages. That is, the system is rebalanced. Specifically, the planners decide
how many roll cages flow between each pair of locations by creating orders. Let xt

i j denote the number of
roll cages that are repositioned from location i to location j in period t, also called the order quantity. The
inventory change in the repositioning step then is

∑
j∈L

(xt
ji − xt

i j) ∀i ∈ L ,∀t ∈ T .

2.2.4 Summary

Using the formulated inventory changes of each step, the inventory evolution in period t is formulated as

rt+1
i = rt

i + ∑
j∈L

(xt
ji − xt

i j)− c out rct
i + c in rct

i + ∑
j∈L

(et
ji − et

i j)−d outt
i +d int

i ∀i ∈ L ,∀t ∈ T .

In this equation we observe that, for each location, the the starting inventory of the next period rt
i is obtained

by taking the starting inventory of current period rt
i , processing the orders from the repositioning step

xt
i j, subtracting the collection outflow c out rct

i and adding the collection inflow c in rct
i , processing the

emergency orders et
i j, which occur during collection, subtracting the inter transport outflow d outt

i , and
adding the inter transport inflow d int

i .
However, negative inventory is not allowed throughout the whole process. Therefore, the inventory

evolution formula only holds if certain criteria are met. Namely, xt
i j and et

i j must ensure the criterion

rt
i + ∑

j∈L

(xt
ji − xt

i j)− c out rct
i + ∑

j∈L

(et
ji − et

i j)≥ 0 ∀i ∈ L ,∀t ∈ T (1)

to avoid negative inventory during repositioning and during collection. If this does not hold, a location
would send more roll cages to other locations than the sum of its starting inventory and roll cages it receives
from other locations. Moreover, the following criterion must be met to avoid negative inventory at depots
during inter transport.

rt
i + ∑

j∈L

(xt
ji − xt

i j)− c out rct
i + c int

i + ∑
j∈L

(et
ji − et

i j)−d outt
i ≥ 0 ∀i ∈ L ,∀t ∈ T . (2)

2.3 Objectives

The main goal in this decision process is to minimize the costs of the repositioning process. Another goal
is to minimize roll cage inventories at normal depots (D \B). Specifically, we aim to minimize expected
costs per period and expected mean roll cage inventory at normal depots per period. These objectives are
subject to the policy with which repositioning decisions are made, which we elaborate in a later subsection.
To model these objectives, in this subsection we introduce the order costs and emergency order costs. Using
these, we define the mean total costs per period over an arbitrary time horizon. Furthermore, we define
the after-repositioning roll cage inventory, and with that, we define the mean after-repositioning inventory
at normal depots per period over an arbitrary time horizon. With these definitions we define the objectives
of this model.

Costs in this process originate from orders. We distinguish three order types in this model, the immediate
order, the structural order and the emergency order. The immediate order and the structural order are part
of the repositioning decision. The emergency order is not part of the repositioning decision; it is created
during the collection process. As said, an immediate order can be created the same day the transport

7



is needed. A structural order needs to be created at least one week in advance and it needs to recur at
the same weekday for minimally three weeks. Moreover, only the origin and destination of a structural
order are fixed, the order quantity can still be chosen the same day (where quantity zero implies an order
cancellation). Let Pd denote the set of structural orders (i, j) on weekday w. Usually structural orders are
fixed for a relatively long period, hence we assume that the structural orders on each weekday are fixed.

Let O = {I,S,E} denote the set of order types k, representing immediate, structural and emergency
orders, respectively. Let fk denote a cost factor of type k. The costs of an order depend on several more
factors. They depend on the travel time in minutes between i and j, denoted by di j and the process time
(loading/unloading from truck) per roll cage, denoted by d. Also, the costs depend on the labor costs of a
truck driver per minute, denoted by c. Lastly, g denotes the gasoline costs per traveled kilometer and α

denotes the travel distance per travel minute (thus, we assume the travel distance is linearly related with
the travel time). A truck has a capacity of K, and the number of trucks needed for order quantity xt

i j is
denoted by yt

i j = ⌈xt
i j/K⌉. The costs of order quantity xt

i j is denoted by costst
i j and given by

costst
i j = fk · c(yt

i j ·di j · (1+
α ·g

c
)+ xt

i j ·d).

The costs of an emergency order em costst
i j are calculated in similar fashion:

em costst
i j = fE · c(zt

i j ·di j · (1+
α ·g

c
)+ et

i j ·d),

where zt
i j = ⌈et

i j/K⌉.

2.3.1 Total costs

Let the mean total costs per period over time horizon T be denoted by C. The main objective is to minimize
its expected value:

min
xt

i j

E[C], (3)

where C = |T |−1
∑

i, j∈L,t∈T

costst
i j + em costst

i j.

The total costs per period may be divided into three subcomponents: the depot order costs, the customer
order costs and the emergency order costs. The mean depot order costs per period over time horizon T
is denoted by Cd and given by

Cd = |T |−1
∑

i∈L , j∈D ,t∈T

costst
i j.

The mean customer order costs per period over time horizon T is denoted by Cc and given by

Cc = |T |−1
∑

i∈L , j∈C ,t∈T

costst
i j.

The mean emergency order order costs per period over time horizon T is denoted by Ce and given by

Ce = |T |−1
∑

i, j∈L ,t∈T

em costst
i j.

Then, C equals the sum of its subcomponents: C =Cd +Cc +Ce.
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2.3.2 After-repositioning inventory

We aim to minimize the roll cage inventories at normal depots as floor space is limited at these depots. We
will choose a very large starting inventory (r0

i ) for buffer locations and remember that the total inventory
in the system is constant. Specifically, the inventory right after the repositioning step is of interest as
practitioners judge the floor occupancy based on this number. Let qt

i = rt
i +∑ j∈L xt

ji − xt
i j denote the

after-repositioning roll cage inventory at location i in period t. Let Q denote the mean after-repositioning
inventory at normal depots per period over time horizon T . We aim to minimize its expected value:

min
xt

i j

E[Q], (4)

where Q = (|T ||D \B|)−1
∑

i∈D\B,t∈T

qt
i.

In the remainder of the report, we may leave out the words ”at normal depots” in this name, because
when we discuss Q, we are always interested in the mean over the normal depots. We choose to model
the mean after-repositioning inventory, as this is preferred over the total after-repositioning inventory by
practitioners.

2.4 Decision policy

We define the term decision policy as a method to obtain all xt
i j, being in period t. A decision policy aims

at optimizing the objectives (3) and (4). Precise costs of inventory is out of scope of this research, but we
know that less inventory yields less costs. Hence, we aim to obtain insight in the effect of a policy on both
objectives, rather than finding a single optimum considering both objectives. The policy should be defined
such that it generates feasible solutions. I.e., conditions (1) and (2) must hold. et

i j is a decision variable,
but not part of the repositioning decision (in the repositioning step). Namely, et

i j is determined after the
repositioning step when the collection quantities at customers are realized, to avoid negative inventory.

This problem involves a decision policy rather than a classical mathematical optimization problem,
where the decision variables xt

i j are determined at once, because decisions can be made in each period t and
the problem involves random variables. c out rct

i , c out palt
i , c in rct

i , c in palt
i , d outt

i , d int
i are random

variables with known PDF for all t. These values get revealed after the repositioning decision in period
t. Being in period t, we assume we can make a perfect prediction of c in rct

i , c in palt
i , d outt

i , d int
i , i.e.

they are given. Hence, in each period, when making a decision, we do not know the realisation of the
specific collection at customers in that period, but we do know the collection inflow and inter transport at
depots in that period. For future periods, all of those variables are random. This is a realistic assumption,
because each day PostNL has accurate forecasts for roll cage and pallet collection inflow for that day.

To reach those goals, a policy is exploited, which will be called the current policy. In the following, a
model of the current policy will be provided. In the current policy, the problem is divided into determining
orders to customers and determining orders to depots. First orders to customers are determined, then these
orders serve as input in the problem of determining the orders to depots. This is done, because each
customer has at least one planned structural order per week and roll cages are repositioned to customers
only on these days. In general, PostNL does not have planned structural orders between depots. So, giving
priority to orders to customers is a heuristic method to minimize costs, because structural orders have a
lower price than immediate orders. Orders to customers will be referred to as customer orders and orders
to depots will be referred to as depot orders.

2.4.1 Customer order policy

We consider the situation that the process is in period t. In determining the customer orders, first the
planners observe to which customers there are planned structural orders in t. These are the to be replenished
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customers in t. For each customer they determine the replenishment quantity using a heuristic base stock
method. In this method, the replenishment quantity is determined such that the inventory level increases
to the expected roll cage collection until next planned structural order to this customer plus a safety stock.
This safety stock is a constant percentage of the expected roll cage collection until next structural order
(same for all customers). covt

i denotes the number of periods until the next structural order to customer
i, being in period t, also called the coverage. Let the replenishment quantity in period t of customer i be
denoted by qtyt

i . Let the safety factor be denoted by s. Then, the formula to calculate qtyt
i is

qtyt
i = max(0,

x=covt
i

∑
x=1

(E[c out rct+x−1
i ]) · (1+ s)− rt

i).

Then, the to be replenished customers that are the destination in only one structural trip are observed.
We call these customers the single source customers. For each depot, the planners make a list of all single
source customers that have a planned structural order with that depot as origin. This list is then sorted
based on replenishment quantity, from large to small. Then, one by one, a customer order is created from
that depot for each customer in that list. This is done until all customers from the list are supplied or until
the depot would end up with negative inventory by creating an order to the customer.

To be replenished customers that are the destination of multiple planned structural orders in a period
are called multi-source customers and are considered after single source customers. The replenishment of
these customers involves an extra decision: the portion of roll cages that comes from each source (depot).
The orders to these customers are determined by sorting all planned structural orders to these customers
based on travel duration, from small to large. Then, one by one, for each planned structural order, an order
is created to the customer with the largest possible quantity. The largest possible quantity is the maximum
of the inventory at the origin depot and the portion of qtyt

i that is not yet replenished by another source.
After determining customer orders in this way, there might be customers to which there are planned

structural orders but not yet determined/created orders, as the depot from which there is a planned structural
order does not have sufficient inventory to supply this customer. A list of these customers is created and
sorted by replenishment quantity. For each customer in this list, starting with the customer that has the
largest replenishment quantity, an (immediate) order is created from the closest depot that has sufficient
inventory to supply the customer.

Using this procedure, the orders (order quantity, origin and destination) for each customer that has a
planned structural order are determined. All other xt

i j to customers are set to zero.

2.4.2 Depot order policy

After the customer orders are determined, some xt
i j are fixed, and the planners know how much of the

inventory (rt
i ) at depots can still be used for between-depot rebalancing. They use rules to ensure depots

end up with enough roll cages, but not too much. The net roll cage need for inter transport is defined as
d outt

i −c in rct
i , because d outt

i is the inter transport outflow and c in rct
i is the roll cage inflow from the

collection process. Specifically, the planners must choose the remainder of the xt
i j variables such that each

depot can execute the upcoming inter transport process. That is,

rt
i +∑ j∈L (xt

ji − xt
i j)≥ max(d outt

i − c in rct
i, M) ∀i ∈ D : d outt

i > 0
rt

i +∑ j∈L (xt
ji − xt

i j)≥ 0 ∀i ∈ D : d outt
i = 0

(5)

If the inter transport outflow (d outt
i ) at a depot is positive, the current inventory (rt

i ) plus the repositioning
(∑ j∈L (xt

ji−xt
i j)) must be larger than the net roll cage need for inter transport (d outt

i −c in rct
i) and larger

than sorting machine set-up inventory (M). If the inter transport outflow (d outt
i ) at a depot is zero, we do

not need roll cages, because there is no inter transport process.
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In order to avoid large inventories at normal depots (objective 4), the planners stick to the following
rule: the after-repositioning inventory should not exceed the net roll cage need for inter transport by more
than S. If M is larger than the net roll cage need, the after repositioning inventory should not exceed M.
I.e., the inventory overage must be equal to or below S. However, if a normal depot has an inter transport
outflow of zero, inventory is not a burden, so the after-repositioning inventory upper bound becomes the
current inventory. That is,

rt
i +∑ j∈L (xt

ji − xt
i j)≤ max(d outt

i − c in rct
i, M)+S ∀i ∈ D \B : d outt

i > 0
rt

i +∑ j∈L (xt
ji − xt

i j)≤ rt
i ∀i ∈ D \B : d outt

i = 0
(6)

In practice, given the customer orders, the intermediate evaluation of

rt
i + ∑

j∈L

(xt
ji − xt

i j)−max(c in rct
i −d outt

i ,M)

is calculated for each (normal) depot. If the result is outside the interval [0,S], it shows how much roll
cages must be repositioned out of this depot. The planners manually find a solution to this problem aiming
at solving this as cheaply as possible, i.e. they manually solve

min
xt

i j
∑

i, j∈D

fI · c(yt
i j ·di j · (1+

α ·g
c

)+ xt
i j ·d),

subject to the already determined customer orders, conditions 5 and 6, and xt
i j ≥ 0 ∀i, j ∈ D .

The planners use their experience and knowledge of the distances between locations to solve the
problem, they do not formalize the method. Hence, their precise method is hard to model. Therefore, in
this paper we assume that the planners solve this problem by feeding this mathematical problem to Gurobi,
a commercial optimization problem solver. Gurobi solves this problem optimally. We have now defined
the current policy, with which all xt

i j are determined in each period t.

3 SIMULATION EXPERIMENT WITH COMPANY DATA

In this section, we apply the developed model of Section 2 to the specific problem of PostNL to obtain the
desired results. First, we describe the most important characteristics of the problem instance of PostNL
and fill the model parameters with company data. Then we present the set-up of the simulation experiment
which we use to obtain results on the defined objectives.

3.1 Problem instance description

We include 1694 customers and 28 depots, spread over The Netherlands and a small part of Belgium. Figure
4 shows all depot locations on the map. Remember that we model the collection quantities c out rct

i and
c out palt

i as random variables with known PDFs (Section 2). To create these PDFs, we examine PostNL
data of all collection trips (trucks collecting parcels at customer and bringing it to a depot) of the first seven
months of 2021. The data consists of the date, origin (customer), destination (depot), collection quantity and
transport item type of collection trips in that period. First, the data is split in roll cage collection and pallet
collection (since we want to obtain separate PDFs for c out rct

i and c out palt
i ). Creating distributions for

each individual customer is not practical, since we would need data with a long time span to obtain smooth
distributions for each customer, while the collection of parcels at customers changes over long periods of
time. Hence, the data is divided in five groups based on the total collection quantity of customers, and we
assume that all customers in a group exhibit the same collection behaviour. This is done by ranking the
customers in terms of total collection quantity over the whole time span and using the quintiles to split
the customers in groups. Then, for each group the data is grouped by weekday. In this way, we obtain
a PDF for the collection of roll cages and a PDF for the collection of pallets for each day of the week
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Figure 4: The depot locations in Benelux with residual value (inter transport inflow minus inter transport
outflow).

for each customer. Figure 5 provides an overview of this procedure. Also, the fraction of c out rct
i and

c out palt
i at customer i that goes to each depot is derived from this data. Namely, looking at all roll cage

collection occurrences of a customer, a certain fraction of the total quantity flows to each depot. We adopt
this fraction in our model. We do the same for pallet collection. With these fractions we obtain c in rct

i
and c in palt

i .
Figure 6a displays the expected total collection flow for both roll cages (number of roll cages) and

pallets (number of roll cage equivalents) for each weekday. One can see that there is a week pattern in the
total collection quantity: The collection volume is the largest on Monday and it decreases steadily until
Friday. During the weekend, the collection quantity is relatively small.

During the inter transport process, before roll cages are moved into trucks to send them to destination
depots, they are scanned to register the inter transport flow of roll cages from depot to depot. This scan-event
data of the first seven months of 2021 is used to fit the linear coefficients β0,β1,β2,β3 and β4 to obtain
d outt

i for each depot. Note that these coefficients therefore differ per depot. This is desired, because the
shape of parcels and the quality of filling the roll cages differ per depot. This data is also used to fit the
fraction of the outflow d outt

i at depot i that flows to each depot j. Since the inter transport outflow on
depots is a function of the collection quantities of that period and the previous period, we see a similar
week pattern in the inter transport quantity, visualized by Figure 6b.

Rebalancing flows between depots depend strongly on the result of the inter transport inflow minus the
inter transport outflow, which we will call the residual. To illustrate, a high residual indicates that a depot
receives more roll cages than it sends during inter transport. Therefore such a depot is likely to supply
other locations during repositioning. We visualized the expected weekly residual for each depot in Figure
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Figure 5: Grouping collection data to obtain probability distributions per transport item type, customer
size, and weekday.

4, which provides an overview of the imbalance in roll cage flows between locations. In Section 4 we
provide rebalancing flow outcomes of the simulation, reflecting on the residual values shown here.

3.2 Simulation experiment

We are interested in obtaining the long term mean inventory at depots (Q), total costs per period (C) and its
subcomponents (Cd ,Cc,Ce). That is, we want to obtain the expected value for these objectives for an arbitrary
time horizon T and corresponding random events. To this end, we conduct a simulation experiment to
obtain estimates for these expected values. In the following, this simulation set-up is described. In Section
4, we present results which we obtained using this simulation set-up.

By simulating the process for m = 42 number of periods in which we randomly generate values for the
random collection parameters, we obtain one realization for each objective (using expressions 3 and 4). We
perform n = 10 of these runs to obtain a sample of these realizations. We let the mean of this sample be the
estimate of the expected value of the corresponding objective variable. Furthermore, adopting the method

from Boon et al. (2020), the expression (Z̄ −Φ(0.975)
√

S2

n , Z̄ +Φ(0.975)
√

S2

n ) provides an approximate
95% confidence interval for these estimates of the objectives. Here Z̄ is the sample mean, Φ(·) is the
cumulative distribution function of the standard normal distribution and S2 is the sample variance (degrees
of freedom = 1).
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(a) The expected total collection flow per weekday. (b) The expected total inter transport flow per weekday.

Figure 6: The total collection and inter transport flows over the week.

In each simulation run of 42 periods, we have a warm up period of seven periods (one week), since
these periods differ slightly from later periods. That is, we leave the first seven periods out of the calculation
of the realizations of the objective values of a run. I.e.: we remove the first seven periods, when calculating
the objectives. In Figure 9, one can see why we do this. The figure shows the costs of the different cost
components for the first 35 periods. One can see that the first week deviates from later weeks. The cause
of this deviation is that we use slightly biased (too low) starting inventories at locations, which results in
larger costs in the first week.

4 RESULTS

This section presents the results of applying the model of Section 2 to the company data of PostNL
(described in Section 3). First, we present the results of the objectives when choosing S = 180, as the
company currently does. Then, we present the results of the objectives of different S.

4.1 Current decision policy

Rebalancing flows are of interest to process owners to evaluate the model and process dynamics. For
instance, when a depot turns out to have large net rebalancing inflow, the process owner might obtain
reduced repositioning costs by decreasing the collection inflow to that depot. The net depot order inflow of
depot i is defined as ∑ j∈D x ji − xi j. Hence, we provide results about the net depot order inflow for depots
SON-EK, SSH-E, UT-SOP to demonstrate that the simulation model is capable of supporting such analysis.
Figure 7 shows the net depot order inflow of the three depots for twenty one subsequent periods of one
arbitrary simulation run. One can see that in general, SON-EK has a positive, and relatively large net depot
order inflow, so SON-EK receives more roll cages than it supplies in the between-depot repositioning. This
is not surprising as this depot has a relatively low residual (see Figure 4). In general, SSH-E has a negative
and low net depot order inflow, meaning that this depot supplies other depots more than it receives from
depots. This also makes sense since SSH-E in general has a relatively high residual (Figure 4). UT-SOP
in general has a net depot order inflow close to zero, which was to be expected as the depot in general
has a residual close to zero (Figure 4). Figure 7 also shows the long term mean of the net depot order
inflow for the three depots, represented by the horizontal lines, and the corresponding confidence interval,
represented by the error bars at the at the left side of the plot.
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Figure 7: The net depot order inflow over time for three depots.

Figure 8 shows the mean after-repositioning inventory for the first 35 periods of one arbitrary simulation
run (the first run). Also, the expected mean after-repositioning inventory per period E[Q] is depicted by
the horizontal line and the corresponding confidence interval is depicted at the left side of the figure.
Note that the measurements are normalized (by expressing them as a percentage of the maximum mean
after-repositioning inventory of this first run) to keep the absolute values confidential. In the remainder of
the report, when presenting results on the inventory levels, the normalization is based on this maximum,
so that all results on inventory levels can be compared. Clearly, there is a week pattern. In general, from
Mondays to Fridays, the mean after-repositioning inventory decreases. The reason for this is a combination
of two system behaviours. Firstly, the inter transport flow decreases over these days, and hence less roll
cages are needed right before the inter transport process. Secondly, the current S-level forces the company
to remove most of the inventory overage to the buffer locations. These two together result in a decreasing
mean after-repositioning inventory from Monday until Friday. In the weekends there is a remarkable peak.
This is caused by the fact that the repositioning process is almost completely shut off during the weekend.
Therefore, almost no customer orders are performed and thus all roll cages from the inter transport of
Friday remain at the depots during the weekend (where they stand still). On Sunday there are a few depots
that do have an inter transport process, hence we see some minor changes from Saturday to Sunday.

Figure 8: The mean after-repositioning inventory over time and E[Q].

Figure 9 shows the depot order costs, the customer order costs and the emergency order costs for the
first 35 periods of one arbitrary simulation run. Also, E[C] is depicted by the horizontal line, accompanied
by its confidence interval at the left side of the figure. Again, the quantities are normalized. To do this,
we use the maximum total cost per period over the periods in this simulation run. In the remainder of this
report, this maximum cost is used to normalize results on costs. The customer order costs is the largest cost
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component, which can be explained by the fact that the number of customer locations is way larger than
the number of depots, thus the number of customer orders is relatively large. Moreover, one can observe a
peak in the depot order costs on Mondays and Fridays. On Fridays, the normal depots receive a relatively
large number of roll cages from buffer locations, because throughout the week, roll cages are repositioned
from normal depots to buffer locations (as a result of the current S level), but the customer orders are still
average in size. On Mondays, normal depots are slightly packed, because the customers received their roll
cages for Monday and Tuesday mostly already on Friday. This contributes to a larger stream of roll cages
to buffer locations on Monday.

Figure 9: The different cost components over time and E[C].

4.2 Alternative policies: effect of S

In this section, we present the results on the effect of the S-level on E[C], its subcomponents E[Cd ], E[Cc],
E[Ce] and the expected mean after-repositioning inventory E[Q]. In Figure 10 the mean after-repositioning
inventory for the first 35 periods of one arbitrary simulation run is given for two levels of max surplus level
S. Note that these thus are two different runs, but they have the same set of random events. Also, E[Q] is
shown for both S-levels including confidence intervals. It can be seen that the larger S, the larger E[Q]. It
is worthwhile noting that especially from Monday until Thursday a less steep decrease in inventory occurs.
This is probably caused by less incentive in the optimization problem to remove redundant inventory at
normal depots to buffer locations.

Figure 10: The effect of S on the after-repositioning inventory.

To show the effect of S on the repositioning costs we show a similar plot for the depot order costs in
Figure 11. We observe that when S = 720, the depot order costs are smaller in any period compared to
when S = 180. This is also reflected by the E[Cd ] for both S levels. A reduction of 32.4% in the E[Cd ] is
obtained by changing the S level to 720. Since the depot order costs is just one subcomponent of the total
costs, we now focus on E[C]. In Figure 12 we show E[C] for several values of S, including confidence
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intervals. One can see that the larger S, the smaller E[C]. However, we see that the decrease in E[C]
decreases as S gets larger. Hence, the benefit per extra roll cage S is decreasing in S. Table 1 provides a
summary of the effect of S on the objectives. It shows the value for the different (subcomponents of the)
objectives in a percentage to the value one obtains by using current S level. Worthwhile noting is that by
changing the S level from 180 to 360, the total repositioning costs can be reduced by 4.0%, which is a
significant saving for PostNL.

Figure 11: The effect of S on the depot order costs during a simulation run.

Figure 12: The effect of S on E[C]. Figure 13: The effect of S on E[Q].

Table 1: The objective values for several levels of S (in percentages of the objective value when S = 180,
which PostNL currently uses).

S E[Q] E[Cd ] E[Cc] E[Ce] E[C]

90 95.9 113.2 100.2 107.1 104.0
180 100.0 100.0 100.0 100.0 100.0
360 107.9 82.6 99.9 96.4 96.0
720 122.0 67.6 99.7 95.6 93.0

5 DISCUSSION

We developed a simulation model that supports optimization of decision making in empty transport item
repositioning in a parcel delivery system. Our model accounts for randomness in the system, by modelling
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the demand at customers for roll cages, our transport items, as random variables. Also, the relation between
transport item inflow of several types (roll cages and pallets) and roll cage demand at depots is modelled.
Furthermore, the model accounts for the structural planning, which are repositioning transport options
against a lower fee. The main idea of the model is to formulate the inventory evolution in the system
subject to the repositioning decision, the random demands, and emergency transport. Also, the repositioning
costs subject to this inventory evolution is formulated. In this way, the model simulates the repositioning
process for an arbitrary control policy, hence several decision policies and algorithms can be evaluated
in terms of costs and inventory levels. Moreover, we modelled the current control policy, called decision
policy, of PostNL. Currently, PostNL manually solves the problem of rebalancing roll cages between depots
to obtain inventories that lay between bounds. We translate this problem to a mathematical optimization
problem and solve it with commercial software Gurobi.

We showed that the model is capable of analyzing various characteristics of the process. First we
examined the current control policy of the company. We showed that (long term and temporal) repositioning
flows at individual locations can be analyzed. Furthermore, we obtained long term per period repositioning
costs of the system and mean inventory levels at depots. Secondly, we compared the current control policy,
in which the company has very small tolerance for inventory overage at depots, to the situation of allowing
larger inventory overage at depots. We clarified the relation between repositioning costs and this overage
tolerance and we show that significant cost savings can be achieved by allowing larger inventory overage
at depots. Specifically, choosing S = 360 results in an increase in the mean inventory at depots of 7.9 %,
but a reduction in the total repositioning costs of 4% (17.4% reduction in depot order costs), which is a
significant saving for the company.

A limitation of this model is that costs of inventory is not accounted for explicitly. This makes the claim
that total costs of PostNL will decrease when increasing inventory at normal depots debatable. Namely,
storage space (e.g. storage trucks) might be needed when PostNL increases inventory at depots. PostNL
has ample inventory at buffer locations for the largest part of the year, so the the number of roll cages
that PostNL owns does not need to be increased, when increasing S. Hence, increased capital costs will
probably not be a problem. Furthermore, the model on its own does not optimize the control policy, it only
evaluates control policies that are provided to the model. This is, however, typical for simulation models
(Dejax and Crainic 1987). Moreover, we make some simplifying assumptions. For instance, we assume
that we perfectly know upcoming (inter transport) demand at depots, but in reality we do not have perfect
predictions. This leads to the occurrence of shortage at depots in reality, with corresponding emergency
costs. In practice this issue is handled by using a safety stock for demand at depots. Hence by assuming
that we have perfect predictions, it is likely that cost savings through larger S are even bigger in reality,
because increased inventory also reduces such shortage costs. Moreover, this assumption can easily be
dropped by just taking the expected demand at a depot in a certain period and including the emergency
trips in the same way we do with customers.

Future work could investigate optimization of the structural planning in a parcel delivery system.
Namely, a large part of repositioning to customers can be planned ahead based on forecasts, and customer
replenishments are the biggest cost component. Challenges in that problem are the large number of
customers and the fixed charge of planning structural orders, which is an issue as the system is random.
Also, future work can focus on modelling the impact of transport item inventory at depots on the system
performance. E.g.: making the storage costs explicit or setting a maximum value on the inventory at depots.
Furthermore, scientists could focus on developing control policies that consider the supply and demands
of depots of multiple periods in the future, instead of myopically repositioning the transport items (which
is done currently).
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A List of model symbols
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Sets
D Set of depots.
C Set of customers.
L = D ∪C Set of locations.
B ⊆ D Set of buffers.
T Set of periods.
W Set of weekdays.
Pd Set of planned structural orders (i, j) on d ∈ W .
O Set of orders types.
Parameters
di j Travel time between i ∈ L and j ∈ L (minutes).
d Process time per roll cage (minutes).
c Labor cost of truck driver per minute (euro/minutes).
g Gasoline costs per traveled kilometer (euro/kilometer).
α Travel distance per minute travel time (kilometer/minutes).
fk Cost factor of order type k.
K Capacity of a truck (number of roll cages).
M Sorting machine set-up inventory (number of roll cages).
S Maximum surplus level (number of roll cages).
covt

i The number of number of periods until next structural order at location i in period t.
c out rct

i Roll cage collection at location i, in period t (number of roll cages).
c out palt

i Pallet collection at location i, in period t (number of roll cage equivalents).
c in rct

i Roll cage collection inflow at location i, in period t (number of roll cages).
c in palt

i Pallet collection inflow at location i, in period t (number of roll cages).
d outt

i Inter transport outflow at location i, in period t (number of roll cages).
d int

i Inter transport inflow at location i, in period t (number of roll cages).
Variables
xt

i j Order quantity from location i to location j in period t (number of roll cages).
et

i j Emergency order quantity from location i to location j in period t (number of roll cages).
yt

i j Number of trucks from location i to location j in period t (number of trucks).
zt

i j Number of emergency trucks from location i to location j in period t (number of trucks).
rt

i Starting inventory at location i in period t (number of roll cages).
qt

i After-repositioning inventory at location i in period t (number of roll cages).
qtyt

i Replenishment quantity at location i in period t.
E[C] Expected repositioning costs per period (euro).
E[Cd ] Expected depot order costs per period (euro).
E[Cc] Expected customer order costs per period (euro).
E[Ce] Expected emergency order costs per period (euro).
E[Q] Expected mean after repositioning inventory at normal depots (number of roll cages).
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