59 research outputs found

    Variability and linkages of aerosol properties between sub-urban and high altitude environments in Northern India

    Get PDF
    Atmospheric aerosol particles are linked to visibility reduction and adverse health effects, and radiation balance of the Earth— directly by reflecting and absorbing solar radiation and indirectly by influencing the cloud properties and processes and, possi-bly, by changing the heterogeneous chemistry of reactive gaseous species. Atmospheric aerosols are the most uncertain driver of global climate change. The South‒Asian region has been increasingly recognized as one of the global hotspots of aerosols; and Indo Gangetic Plains (IGP) is one among them with complex geography, heterogeneity in sources and varying atmospheric dynamics. These factors make IGP’s aerosol and pollution very difficult to characterize. So far, long-term regional observations of aerosol properties have been scarce in this region, but argued necessary in order to bring the knowledge of regional and global distribution of aerosols further. In this context, regional studies of aerosol properties their dynamics and atmospheric processes are very important areas of investigation to better estimate the climatic importance of submicron aerosol particles. Moreover regional studies over IGP-Himalayas domain are inevitable to know how trans-Himalayan valleys are acting as conduits for aerosol and pollution transport from the plains to the Himalayas. Therefore, in this thesis we studied these issues by applying basic to state-of-the-art instrumentation in two different envi-ronments, plains—Gual Pahari, and Himalayan foothills— Mukteshwar; to obtain physical and optical properties of submi-cron particles. Additionally, we used meteorological parameters, emissions and process modelling to determine local and region-al scale transport of atmospheric aerosols. The work carried out as part of the thesis infers four main conclusions, 1) Simultaneous long-term measurements at both the environments in Northern India region are useful to establish linkages between sub-urban environment and high altitude sites. One site represents a source region, while another characterize as a receiver site of atmospheric pollutants; 2) A distinct cycle of aerosol properties, both seasonal and diurnal, is present and provides information of driving factors of aerosol variability at both the sites; 3) The contribution of regional sources seem to dominate over the local /sub-urban sources, in the IGP region bounda-ry layer; 4) Aerosol properties and specific humidity “passive tracer” based analysis clearly reveal that the mountainous terrain sites are under the influence of air from the plains due to convective transport processes enhanced by local and mesoscale topography. The results presented in this thesis are particularly useful, first, when examining the linkages of aerosol properties variability between two different environments. The second, in determining for instance local versus regional influences, and pollutants reaching high altitude sites which can be explained by boundary layer dynamics processes, especially in the mountain terrain where the modelled mixing layer depths have uncertainties. This work outlines future direction of multi-points measurements on vertical profile of atmospheric particles and local boundary layer over mountainous terrain where the atmospheric structure becomes much more complicated. Additionally, investigations including isotope-based analysis and modelling work over the Himalayan region are desirable to be able to describe better the transport of atmospheric aerosols from IGP to high altitudes and further up to Himalayan ice-pack and glaciers where aerosol deposition could have serious environmental impacts

    EFFICIENT AND SCALABLE PROPAGATION OF SECURITY GROUP MEMBERSHIP IN AN ENTERPRISE WITH RESOLUTION ACROSS MULTIPLE MEMBERSHIP SOURCES

    Get PDF
    Techniques are described to provide a scalable, secure bindings propagation mechanism. The bindings published by multiple speakers are efficiently reconciled and the filtered messages are notified to the listeners

    Deposition of light-absorbing particles in glacier snow of the Sunderdhunga Valley, the southern forefront of the central Himalayas

    Get PDF
    Anthropogenic activities on the Indo-Gangetic Plain emit vast amounts of light-absorbing particles (LAPs) into the atmosphere, modifying the atmospheric radiation state. With transport to the nearby Himalayas and deposition to its surfaces the particles contribute to glacier melt and snowmelt via darkening of the highly reflective snow. The central Himalayas have been identified as a region where LAPs are especially pronounced in glacier snow but still remain a region where measurements of LAPs in the snow are scarce. Here we study the deposition of LAPs in five snow pits sampled in 2016 (and one from 2015) within 1 km from each other from two glaciers in the Sunderdhunga Valley, in the state of Uttarakhand, India, in the central Himalayas. The snow pits display a distinct enriched LAP layer interleaved by younger snow above and older snow below. The LAPs exhibit a distinct vertical distribution in these different snow layers. For the analyzed elemental carbon (EC), the younger snow layers in the different pits show similarities, which can be characterized by a deposition constant of about 50 mu g m(-2) mm(-1) snow water equivalent (SWE), while the old-snow layers also indicate similar values, described by a deposition constant of roughly 150 mu g m(-2) mm(-1) SWE. The enriched LAP layer, contrarily, displays no similar trends between the pits. Instead, it is characterized by very high amounts of LAPs and differ in orders of magnitude for concentration between the pits. The enriched LAP layer is likely a result of strong melting that took place during the summers of 2015 and 2016, as well as possible lateral transport of LAPs. The mineral dust fractional absorption is slightly below 50% for the young- and old-snow layers, whereas it is the dominating light-absorbing constituent in the enriched LAP layer, thus, highlighting the importance of dust in the region. Our results indicate the problems with complex topography in the Himalayas but, nonetheless, can be useful in large-scale assessments of LAPs in Himalayan snow.Peer reviewe

    Snow albedo and its sensitivity to changes in deposited light-absorbing particles estimated from ambient temperature and snow depth observations at a high-altitude site in the Himalaya

    Get PDF
    Snow darkening by deposited light-absorbing particles (LAP) accelerates snowmelt and shifts the snow meltout date (MOD). Here, we present a simple approach to estimate the snow albedo variability due to LAP deposition and test this method with data for 2 seasons (February-May 2016 and December 2016-June 2017) at a high-altitude valley site in the Central Himalayas, India. We derive a parameterization for the snow albedo that only depends on the daily observations of average ambient temperature and change in snow depth, as well as an assumed average concentration of LAP in snow precipitation. Linear regression between observed and parameterized albedo for the base case assuming an equivalent elemental carbon concentration [ECeq] of 100 ng g(-1) in snow precipitation yields a slope of 0.75 and a Pearson correlation coefficient r(2) of 0.76. However, comparing the integrated amount of shortwave radiation absorbed during the winter season using observed albedo versus base case albedo resulted in rather small differences of 11% and 4% at the end of Seasons 1 and 2, respectively. The enhanced energy absorbed due to LAP at the end of the 2 seasons for the base case scenario (assuming an [ECeq] of 100 ng g(-1) in snow precipitation) was 40% and 36% compared to pristine snow. A numerical evaluation with different assumed [ECeq] in snow precipitation suggests that the relative sensitivity of snow albedo to changes in [ECeq] remains rather constant for the 2 seasons. Doubling [ECeq] augments the absorption by less than 20%, highlighting that the impact on a MOD is small even for a doubling of average LAP in snow precipitation.Peer reviewe

    Light-absorption of dust and elemental carbon in snow in the Indian Himalayas and the Finnish Arctic

    Get PDF
    Light-absorbing impurities (LAIs) deposited in snow have the potential to substantially affect the snow radiation budget, with subsequent implications for snow melt. To more accurately quantify the snow albedo, the contribution from different LAIs needs to be assessed. Here we estimate the main LAI components, elemental carbon (EC) (as a proxy for black carbon) and mineral dust in snow from the Indian Himalayas and paired the results with snow samples from Arctic Finland. The impurities are collected onto quartz filters and are analyzed thermal-optically for EC, as well as with an additional optical measurement to estimate the light-absorption of dust separately on the filters. Laboratory tests were conducted using substrates containing soot and mineral particles, especially prepared to test the experimental setup. Analyzed ambient snow samples show EC concentrations that are in the same range as presented by previous research, for each respective region. In terms of the mass absorption cross section (MAC) our ambient EC surprisingly had about half of the MAC value compared to our laboratory standard EC (chimney soot), suggesting a less light absorptive EC in the snow, which has consequences for the snow albedo reduction caused by EC. In the Himalayan samples, larger contributions by dust (in the range of 50% or greater for the light absorption caused by the LAI) highlighted the importance of dust acting as a light absorber in the snow. Moreover, EC concentrations in the Indian samples, acquired from a 120 cm deep snow pit (possibly covering the last five years of snow fall), suggest an increase in both EC and dust deposition. This work emphasizes the complexity in determining the snow albedo, showing that LAI concentrations alone might not be sufficient, but additional transient effects on the light-absorbing properties of the EC need to be considered and studied in the snow. Equally as imperative is the confirmation of the spatial and temporal representativeness of these data by comparing data from several and deeper pits explored at the same time.Peer reviewe

    Exhaust particle number and composition for diesel and gasoline passenger cars under transient driving conditions : Real-world emissions down to 1.5 nm

    Get PDF
    Recent recommendations given by WHO include systematic measurements of ambient particle number concentration and black carbon (BC) concentrations. In India and several other highly polluted areas, the air quality problems are severe and the need for air quality related information is urgent. This study focuses on particle number emissions and BC emissions of passenger cars that are technologically relevant from an Indian perspective. Particle number and BC were investigated under real-world conditions for driving cycles typical for Indian urban environments. Two mobile laboratories and advanced aerosol and trace gas instrumentation were utilized. Our study shows that passenger cars without exhaust particle filtration can emit in real-world conditions large number of particles, and especially at deceleration a significant fraction of particle number can be even in 1.5–10 nm particle sizes. The mass concentration of exhaust plume particles was dominated by BC that was emitted especially at acceleration conditions. However, exhaust particles contained also organic compounds, indicating the roles of engine oil and fuel in exhaust particle formation. In general, our study was motivated by serious Indian air quality problems, by the recognized lack of emission information related to Indian traffic, and by the recent WHO air quality guidance; our results emphasize the importance of monitoring particle number concentrations and BC also in Indian urban areas and especially in traffic environments where people can be significantly exposed to fresh exhaust emissions.Peer reviewe

    Nitrogen Challenges and Opportunities for Agricultural and Environmental Science in India

    Get PDF
    In the last six decades, the consumption of reactive nitrogen (Nr) in the form of fertilizer in India has been growing rapidly, whilst the nitrogen use efficiency (NUE) of cropping systems has been decreasing. These trends have led to increasing environmental losses of Nr, threatening the quality of air, soils, and fresh waters, and thereby endangering climate-stability, ecosystems, and human-health. Since it has been suggested that the fertilizer consumption of India may double by 2050, there is an urgent need for scientific research to support better nitrogen management in Indian agriculture. In order to share knowledge and to develop a joint vision, experts from the UK and India came together for a conference and workshop on “Challenges and Opportunities for Agricultural Nitrogen Science in India.” The meeting concluded with three core messages: (1) Soil stewardship is essential and legumes need to be planted in rotation with cereals to increase nitrogen fixation in areas of limited Nr availability. Synthetic symbioses and plastidic nitrogen fixation are possibly disruptive technologies, but their potential and implications must be considered. (2) Genetic diversity of crops and new technologies need to be shared and exploited to reduce N losses and support productive, sustainable agriculture livelihoods. Móring et al. Nitrogen Challenges and Opportunities (3) The use of leaf color sensing shows great potential to reduce nitrogen fertilizer use (by 10–15%). This, together with the usage of urease inhibitors in neem-coated urea, and better management of manure, urine, and crop residues, could result in a 20–25% improvement in NUE of India by 2030

    Identifying oral microbiome alterations in adult betel quid chewing population of Delhi, India.

    No full text
    The study targets to establish a factorial association of oral microbiome alterations (oral dysbiosis) with betel quid chewing habits through a comparison of the oral microbiome of Betel quid chewers and non-chewing individuals. Oral microbiome analysis of 22 adult individuals in the Delhi region of India through the 16S sequencing approach was carried out to observe the differences in taxonomic abundance and diversity. A significant difference in diversity and richness among Betel Quid Chewers (BQC) and Betel Quid Non-Chewers (BQNC) groups was observed. There were significant differences in alpha diversity among the BQC in comparison to BQNC. However, in the age group of 21-30 years old young BQC and BQNC there was no significant difference in alpha diversity. Similar result was obtained while comparing BQC and Smoker-alcoholic BQC. BQ smoker-chewers expressed significant variance in comparison to BQC, based on cluster pattern analysis. The OTU-based Venn Diagram Analysis revealed an altered microbiota, for BQ chewing group with 0-10 years exposure in comparison to those with 10 years and above. The change in the microbial niche in early chewers may be due to abrupt chemical component exposure affecting the oral cavity, and thereafter establishing a unique microenvironment in the long-term BQC. Linear discriminant analysis revealed, 55 significant features among BQC and Alcoholic-Smoker BQC; and 20 significant features among BQC and Smoker BQC respectively. The study shows the abundance of novel bacterial genera in the BQC oral cavity in addition to the commonly found ones. Since the oral microbiome plays a significant role in maintaining local homeostasis, investigating the link between its imbalance in such conditions that are known to have an association with oral diseases including cancers may lead to the identification of specific microbiome-based signatures for its early diagnosis

    Assessment of carbonaceous aerosols at Mukteshwar: A high-altitude (~2200 m amsl) background site in the foothills of the Central Himalayas

    No full text
    The present study examined the equivalent black carbon (eBC) mass concentrations measured over 10.5 years (September 2005–March 2016) using a 7-wavelength Aethalometer (AE-31) at Mukteshwar, a high-altitude and regional background site in the foothills of Indian central Himalayas. The total spectral absorption coefficient (babs) was divided into three categories: black carbon (BC) and brown carbon (BrC); fossil fuels (FF) and wood/biomass burning (WB/BB); and primary and secondary sources. At the wavelength of 370 nm, a significant BrC contribution (25 %) to the total babs is identified, characterized by a pronounced seasonal variation with winter (December–January-February) maxima (31 %) and post-monsoon (October and November) minima (20 %); whereas, at 660 nm, the contribution of BrC is dramatically less (9 %). Climatologically, the estimated BCFF at 880 nm ranges from 0.25 ± 0.19 ÎŒg m−3 in July to 1.17 ± 0.80 ÎŒg m−3 in May with the annual average of 0.67 ± 0.63 ÎŒg m−3, accounting for 79 % of the BC mass. The maximum BCFF/BC fraction reaches its peak value during the monsoon (July and August, 85 %), indicating the dominance of local traffic emissions due to tourism activities. Further, the highest BCWB concentration observed during pre-monsoon (March–May) suggests the influence of local forest fires along with long-range transported aerosols from the low-altitude plains. The increased contribution of BrC (26 % at 370 nm) and WB absorption (61 % at 370 nm) to the total absorption at the shorter wavelengths suggests that wood burning is one of the major sources of BrC emissions. Secondary BrC absorption accounts for 24 % [91 %] of the total absorption [BrC absorption] at 370 nm, implying the dominance of secondary sources in BrC formation. A trend analysis for the measured BC concentration shows a statistically significant increasing trend with a slope of 0.02 ÎŒgm−3/year with a total increase of about 22 % over the study period. A back trajectory-based receptor model, potential source contribution function (PSCF), was used to identify the potential regional source region of BC. The main source regions of BC are the northwest states of India in the IGP region and the northeast Pakistan region
    • 

    corecore