171 research outputs found

    Use of carbon-13 as a population marker for Anopheles arabiensis in a sterile insect technique (SIT) context

    Get PDF
    BACKGROUND: Monitoring of sterile to wild insect ratios in field populations can be useful to follow the progress in genetic control programmes such as the Sterile Insect Technique (SIT). Of the numerous methods for marking insects most are not suitable for use in mass rearing and mass release. Suitable ones include dye marking, genetic marking and chemical marking. METHODS: The feasibility of using the stable isotope of carbon, (13)C, as a potential chemical marker for Anopheles arabiensis was evaluated in the laboratory. Labeled-(13)C glucose was incorporated into the larval diet in a powder or liquid form. The contribution of adult sugar feeding to the total mosquito carbon pool and the metabolically active carbon pool was determined by tracing the decline of the enrichment of the adult male mosquito as it switched from a labeled larval diet to an unlabeled adult diet. This decline in the adult was monitored by destructive sampling of the whole mosquito and analyzed using isotope ratio mass spectrometry. RESULTS: A two-pool model was used to describe the decline of the (13)C-enrichment of adult mosquitoes. The proportion of the total adult carbon pool derived from the adult sugar diet over the life span of mosquitoes was determined and the ratio of structural carbon, with a low turnover rate to metabolically active non-structural carbon was assessed. The uptake and turnover of sugar in the metabolically active fraction suggests that after 3 days >70% of the active fraction carbon is derived from sugar feeding (increasing to >90% by day 7), indicating the high resource demand of male mosquitoes. CONCLUSION: It was possible to "fix" the isotopic label in adult An. arabiensis and to detect the label at an appropriate concentration up to 21 days post-emergence. The optimum labeling treatment would cost around 250 US$ per million mosquitoes. Stable isotope marking may thus aid research on the fate of released insects besides other population-based ecological studies

    Stable isotope methods in biological and ecological studies of arthropods

    Get PDF
    This is an eclectic review and analysis of contemporary and promising stable isotope methodologies to study the biology and ecology of arthropods. It is augmented with literature from other disciplines, indicative of the potential for knowledge transfer. It is demonstrated that stable isotopes can be used to understand fundamental processes in the biology and ecology of arthropods, which range from nutrition and resource allocation to dispersal, food-web structure, predation, etc. It is concluded that falling costs and reduced complexity of isotope analysis, besides the emergence of new analytical methods, are likely to improve access to isotope technology for arthropod studies still further. Stable isotopes pose no environmental threat and do not change the chemistry or biology of the target organism or system. These therefore represent ideal tracers for field and ecophysiological studies, thereby avoiding reductionist experimentation and encouraging more holistic approaches. Considering (i) the ease with which insects and other arthropods can be marked, (ii) minimal impact of the label on their behaviour, physiology, and ecology, and (iii) environmental safety, we advocate more widespread application of stable isotope technology in arthropod studies and present a variety of potential uses

    Intrinsic and Synthetic Stable Isotope Marking of Tsetse Flies

    Get PDF
    The sterile insect technique has been successfully used to eliminate tsetse populations in a number of programs. Program monitoring in the field relies on the ability to accurately differentiate released sterile insects from wild insects so that estimates can be made of the ratio of sterile males to wild males. Typically, released flies are marked with a dye, which is not always reliable. The difference in isotopic signatures between wild and factory-reared populations could be a reliable and intrinsic secondary marker to complement existing marking methods. Isotopic signatures are natural differences in stable isotope composition of organisms due to discrimination against the heavier isotopes during some biological processes. As the isotopic signature of an organism is mainly dependent on what it eats; by feeding factory-reared flies isotopically different diets to those of the wild population it is possible to intrinsically mark the flies. To test this approach unlabeled samples of Glossina pallidipes (Austen) (Diptera: Glossinidae) from a mass rearing facility and wild populations were analyzed to determine whether there were any natural differences in signatures that could be used as markers. In addition experiments were conducted in which the blood diet was supplemented with isotopically enriched compounds and the persistence of the marker in the offspring determined. There were distinct natural isotopic differences between factory reared and wild tsetse populations that could be reliably used as population markers. It was also possible to rear artificially isotopically labeled flies using simple technology and these flies were clearly distinguishable from wild populations with greater than 95% certainty after 85 days of “release”. These techniques could be readily adopted for use in SIT programs as complimentary marking techniques

    Biophysical potential of crop residues for biochar carbon sequestration, and co-benefits, in Uganda

    Get PDF
    Open Access Journal; Published online: 27 July 2019Increasing organic matter/carbon contents of soils is one option proposed to offset climate change inducing greenhouse gas (GHG) emissions, under the auspices of the UNFCC Paris Agreement. One of the complementary practices to sequester carbon in soils on decadal time scales is amending it with biochar, a carbon rich byproduct of biomass gasification. In sub‐Saharan Africa (SSA), there is a widespread and close interplay of agrarian‐based economies and the use of biomass for fuel, which makes the co‐benefits of biochar production for agriculture and energy supply explicitly different from the rest of the world. To date, the quantities of residues available from staple crops for biochar production, and their potential for carbon sequestration in farming systems of SSA have not been comprehensively investigated. We assessed the productivity and usage of biomass waste from maize, sorghum, rice, millet, and groundnut crops; specifically quantifying straw, shanks, chaff, and shells, based on measurements from multiple farmer fields and household surveys in eastern Uganda. Moreover, allometric models were tested, using grain productivity, plant height, and density as predictors. These models enable rapid and low‐cost assessment of the potential availability of feedstocks at various spatial scales: individual cropland, farm enterprise, region, and country. Ultimately, we modeled the carbon balance in soils of major cropping systems when amended with biochar from biomass residues, and up‐scaled this for basic scenario analysis. This interdisciplinary approach showcases that there is significant biophysical potential for soil carbon sequestration in farming systems of Uganda through amendment of biochar derived from unused residues of cereals and legume crops. Furthermore, information about these biomass waste flows is used for estimating the rates of biochar input that could be made to farmlands, as well as the amounts of energy that could be produced with gasifier appliances

    UAV-based sampling systems to analyse greenhouse gases and volatile organic compounds encompassing compound-specific stable isotope analysis

    Get PDF
    The study herein reports on the development and testing of sampling systems (and subsequent analytical setups) that were deployed on an unmanned aerial vehicle (UAV) for the purpose of analysing greenhouse gases (GHGs) and volatile organic compounds (VOCs) in the lower atmospheric boundary layer. Two sampling devices, both of which can be mounted to an UAV with a payload capability greater than 1 kg, were tested for respective sampling and analysis of specific GHGs (carbon dioxide, CO2, and methane, CH4) and VOCs (chlorinated ethenes, CEs). The gas analyses included measurements of the molar amounts and the respective stable carbon isotope ratios. In addition to compound calibration in the laboratory, the functionality of the samplers and the UAV-based sampling was tested in the field. Atmospheric air was either flushed through sorbent tubes for VOC sampling or collected and sampled in glass vials for GHG analysis. The measurement setup for the sorbent tubes achieved analyte mass recovery rates of 63 %–100 % (more favourable for lower chlorinated ethenes), when prepared from gaseous or liquid calibration standards, and reached a precision (2σ) better than 0.7 ‰ for δ13C values in the range of 0.35–4.45 nmol. The UAV-equipped samplers were tested over two field sampling campaigns designed to (1) compare manual and UAV-collected samples taken up a vertical profile at a forest site and (2) identify potential emissions of CO2, CH4 or VOC from a former domestic waste dump. The precision of CO2 measurements from whole air samples was ≤7.3 µmol mol−1 and ≤0.3 ‰ for δ13C values and ≤0.03 µmol mol−1 and ≤0.2 ‰ for CH4 working gas standards. The results of the whole air sample analyses for CO2 and CH4 were sufficiently accurate to detect and localise potential landfill gas emissions from a secured former domestic waste dump using level flight. Vertical CO2 profiles from a forest location showed a causally comprehensive pattern in the molar ratios and stable carbon isotope ratios but also the potential falsification of the positional accuracy of a UAV-assisted air sample due to the influence of the rotor downwash. The results demonstrate that the UAV sampling systems presented here represent a viable tool for atmospheric background monitoring, as well as for evaluating and identifying emission sources. By expanding the part of the lower atmosphere that can be practicably sampled over horizontal and vertical axes, the presented UAV-capable sampling systems, which also allow for compound-specific stable isotope analysis (CSIA), may facilitate an improved understanding of surface–atmosphere fluxes of trace gas.</p

    Kapitel 5. Mitigation des Klimawandels

    Get PDF
    Aufgrund der Größe der betroffenen Landflächen, den bei ihrer Nutzung emittierten und sequestrierten Treibhausgasen (THG) und des teilweise ungünstigen Zustands von Böden in Hinblick auf ihren Gehalt an organisch gebundenem Kohlenstoff (C) kommt der Landnutzung a priori eine wichtige Rolle bei Mitigationsbemühungen zu. Zur Minderung des Klimawandels ist eine Verringerung der atmosphärischen CO2-Konzentration erforderlich, die durch eine Abnahme der THG-Emissionen und durch Aufnahme und langfristige Speicherung von atmosphärischem Kohlenstoff in Biomasse und Boden erreicht werden kann (Chenu et al., 2019; Mayer et al., 2018; Paustian et al., 2016; Vos et al., 2018). Der Erhaltung bzw. idealerweise Erhöhung der organischen Substanz des Bodens durch geeignete Bodenschutzmaßnahmen kommt entscheidende Bedeutung zu

    Metabolic analysis of the interaction between plants and herbivores

    Get PDF
    Insect herbivores by necessity have to deal with a large arsenal of plant defence metabolites. The levels of defence compounds may be increased by insect damage. These induced plant responses may also affect the metabolism and performance of successive insect herbivores. As the chemical nature of induced responses is largely unknown, global metabolomic analyses are a valuable tool to gain more insight into the metabolites possibly involved in such interactions. This study analyzed the interaction between feral cabbage (Brassica oleracea) and small cabbage white caterpillars (Pieris rapae) and how previous attacks to the plant affect the caterpillar metabolism. Because plants may be induced by shoot and root herbivory, we compared shoot and root induction by treating the plants on either plant part with jasmonic acid. Extracts of the plants and the caterpillars were chemically analysed using Ultra Performance Liquid Chromatography/Time of Flight Mass Spectrometry (UPLCT/MS). The study revealed that the levels of three structurally related coumaroylquinic acids were elevated in plants treated on the shoot. The levels of these compounds in plants and caterpillars were highly correlated: these compounds were defined as the ‘metabolic interface’. The role of these metabolites could only be discovered using simultaneous analysis of the plant and caterpillar metabolomes. We conclude that a metabolomics approach is useful in discovering unexpected bioactive compounds involved in ecological interactions between plants and their herbivores and higher trophic levels.

    Trans European decomposition index study in arable soils with different crop species diversity using 13C-labelled litter

    Get PDF
    Póster presentado en la Sessión 8 en el Joint European Stable Isotope Users group Meeting JESIUM 2022 Kuopio, Finland Online 10–14 October 2022.Mixed species systems are currently increasing in area in Europe providing opportunities for sustainable intensification of agriculture. The agroforestry systems cover about 9% of the utilized agricultural area and integrated crop livestock systems occupy a major place in the European agricultural area including perennial forage grasses and grasslands sown with varying degrees of duration. Intercropping and other mixed cash crop systems are currently less developed in the EU. The EU EJP-SOIL funded MIXROOT-C project (2021-2024) is gaining a management-oriented understanding of the effect of mixed-species root systems on carbon flow and organic matter accumulation in European agricultural soils.N

    The Stakes in Bayh-Dole: Public Values Beyond the Pace of Innovation

    Get PDF
    Evaluation studies of the Bayh-Dole Act are generally concerned with the pace of innovation or the transgressions to the independence of research. While these concerns are important, I propose here to expand the range of public values considered in assessing Bayh-Dole and formulating future reforms. To this end, I first examine the changes in the terms of the Bayh-Dole debate and the drift in its design. Neoliberal ideas have had a definitive influence on U.S. innovation policy for the last thirty years, including legislation to strengthen patent protection. Moreover, the neoliberal policy agenda is articulated and justified in the interest of “competitiveness.” Rhetorically, this agenda equates competitiveness with economic growth and this with the public interest. Against that backdrop, I use Public Value Failure criteria to show that values such as political equality, transparency, and fairness in the distribution of the benefits of innovation, are worth considering to counter the “policy drift” of Bayh-Dole
    corecore