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Abstract

 

This is an eclectic review and analysis of contemporary and promising stable isotope methodologies
to study the biology and ecology of arthropods. It is augmented with literature from other disciplines,
indicative of the potential for knowledge transfer. It is demonstrated that stable isotopes can be used
to understand fundamental processes in the biology and ecology of arthropods, which range from
nutrition and resource allocation to dispersal, food-web structure, predation, etc. It is concluded that
falling costs and reduced complexity of isotope analysis, besides the emergence of new analytical
methods, are likely to improve access to isotope technology for arthropod studies still further. Stable
isotopes pose no environmental threat and do not change the chemistry or biology of the target
organism or system. These therefore represent ideal tracers for field and ecophysiological studies,
thereby avoiding reductionist experimentation and encouraging more holistic approaches. Con-
sidering (i) the ease with which insects and other arthropods can be marked, (ii) minimal impact of
the label on their behaviour, physiology, and ecology, and (iii) environmental safety, we advocate
more widespread application of stable isotope technology in arthropod studies and present a variety

 

of potential uses.

 

Introduction

 

This article is a synthesis of potential stable isotope metho-
dologies used to study biology and ecology in an arthropod
(and mainly entomological) context. It is intended to
provide an introduction to the use of stable isotopes in
entomological studies and provide a springboard for
further research. The science of stable isotopes and how
these can be used in various ecological and biological
studies is covered.

Stable isotopes occur naturally in the environment.
They are safe and non-radioactive, and do not decay,
which make them useful natural tracers. An isotope of an
element has the same atomic number as the element but a

different number of neutrons and thus a different atomic
weight. For example, approximately 1% of all carbon
atoms are 

 

13

 

C, the rest 

 

12

 

C, whereas approximately 0.4% of
all nitrogen atoms, are 

 

15

 

N atoms with the rest 

 

14

 

N atoms.
There are two approaches to using stable isotopes.

Natural abundance studies use naturally occurring dif-
ferences in isotopic signatures to follow flows and processes.
Enrichment studies deploy labelled compounds enriched
in particular isotopes, which are added to the system and
followed.

 

Natural abundance studies

 

: innate differences in isotopic
signature are the result of different rates of reaction at an
enzymatic level, which can result in slight variations in
isotopic composition in nature, and these natural signatures
can be used in ecological studies to trace food-web structure,
migration patterns, feeding preferences, etc. (Hobson &
Clark, 1992; Ostrom et al., 1997; Wassenaar & Hobson,
1998; Fantle et al., 1999; Hood-Nowotny et al., 2005).
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Enrichment studies:

 

 there is a wide variety of commer-
cially available stable isotope-enriched compounds that
have higher concentrations of the rarer isotope than the
natural background (or natural abundance). These can be
easily integrated into feeding regimes of target insects and
can be used, for example, in capture–recapture, feeding
preference, and resource allocation. It is important to note
that natural abundance and enrichment studies are often
subject to different assumptions, terminologies, and caveats.

Over the past 20 years, the cost and complexity of stable
isotope analysis has decreased dramatically. The cost of
highly labelled 

 

13

 

C glucose, for example, is approximately
$100 per gram. Samples are easy and safe to dispatch and
as a result, there are now a number of laboratories offering
isotope analysis at affordable prices, ranging from $5–80
per sample depending on market forces and the nature
of the isotope. The availability of this service allows for
an outsourcing approach, with the associated benefits, for
example, of not having to invest in capital equipment and
associated infrastructure.

It should be noted that unlike painting, dusting, etc.,
stable isotope methods are non-invasive and samples
require only minimal preparation following collection,
which makes the cost of the process as a whole comparable
to methods such as polymerase chain reaction (PCR). The
developments in mass spectrometry have widened the
accessibility and scope of stable isotope science, which
has led to an increase in their use in an eclectic mix of
scientific disciplines, from archaeology, nutrition, geology,
and physiology, through to forensics (Hood-Nowotny
et al., 2005).

Many of the biological processes and reactions that have
been investigated using radioactive tracers could use stable
isotopes instead, with the distinct advantage that there are
no environmental impact or (bio)safety issues associated
with using stable isotope-labelled material. Because stable
isotopes pose no environmental risks, it is possible to
release stable isotope-labelled insects into the environment
and to trace their movement or to apply specific stable
isotopes in a variety of ecosystem-labelling experiments.
Stable isotopes are particularly useful in ecophysiology,
which is the science of how whole populations and com-
munities behave in relation to environmental constraints.
These provide a means to follow pathways with minimal
disturbance or impact to the system (Le Maho, 2002).

There is a vast range of articles describing the use of
stable isotopes in biological and ecological studies per se.
However, given the power and potential of isotopic tech-
niques as methodological tools, the literature focusing on
arthropods is surprisingly limited. As this may be a result
of researchers being unfamiliar or uncomfortable with
isotope technology, this article will attempt to address this

issue. We will first briefly introduce the basics of isotopes,
including the measurement of isotopes and how isotope
values are reported and interpreted. This will be followed
by descriptions of how isotopes can be used in a series of
applications in biology and ecology, which will encompass
growth, distribution, and processes influencing the abun-
dance of organisms, in addition to intra- and interspecies
interactions and the transformation and flux of energy and
matter. More specifically, we will seek to explain how stable
isotopes can be used for marking in population and range
studies, studying migration, analysing food-web structure,
investigating feeding preferences and resource allocation
and the dynamics of tissue turnover, and studying mating
and competition.

 

Isotope basics

 

The natural abundance of the rarer isotopic form is usually
expressed as a simple percentage of all isotopic forms. For
example, the natural abundance of 

 

15

 

N in air is 0.3663%.
This means that one atom in every 273 atoms of nitrogen
is the rarer 

 

15

 

N isotope and 272 atoms are the 

 

14

 

N form.
The most commonly used isotopes in ecological studies
are hydrogen (

 

2

 

H natural abundance 0.01492%), carbon
(

 

13

 

C natural abundance 1.108%), nitrogen (

 

15

 

N natural
abundance 0.3663%), oxygen (

 

18

 

O natural abundance
0.204%), and occasionally strontium (

 

84

 

Sr 0.56%, 

 

86

 

Sr 9.86%,
or 

 

87

 

Sr 7.0%) or sulphur (

 

34

 

S natural abundance 4.25%).

 

Measurement of isotopes

 

Stable isotope analysis of samples is traditionally undertaken
using isotope ratio mass spectrometry (IRMS) coupled to
an elemental analyser (Figure 1). Samples are usually
collected in dried form and are finely ground and weighed
into a small cylindrical tin cup (8 mm in height 

 

×

 

 5 mm in
diameter). However, in entomological studies, it is often
possible to analyse a whole insect or insect part by loading
it in the tin cup and drying it directly, thereby substantially
reducing sample preparation time. These organic samples
are initially combusted at high temperature (1800 

 

°

 

C) and
converted to gas (N

 

2

 

, CO

 

2

 

, H

 

2

 

, and SO

 

2

 

) in an appropriate
preparation system linked to the IRMS. The sample is
scrubbed and constituent gases are separated on a gas
chromatograph column and bled into the mass spectrometer.
Under vacuum, the gases are ionized on a hot filament,
accelerated, and separated by a magnetic field based on
their mass to charge ratio (m/z). The separated ions are
collected in Faraday cups, where the ratios of the isotopes
of interest are determined. The output of the mass spectro-
meter is a ratio, which can be internally converted to an atom
percentage value or a delta value (see below), depending
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on the standards used and the experimental requirements.
Current fully automated IRMS systems are easily capable
of accurately determining isotope ratios in approximately
10 

 

µ

 

g of carbon and 5 

 

µ

 

g of nitrogen. Depending on the
machine and its configuration, this usually takes 5–10 min
per sample.

There is a range of other successful spectroscopic tech-
niques to measure stable isotopes in gases and liquids,
many of which are laser or infra red based. These tech-
niques are likely to expand the scope and affordability of
isotope measurement capabilities even further in the
future, as they facilitate rapid analysis at picomole concen-
trations and are generally simpler systems than the mass
spectrometer described above. For a review of the current
status in this field see Kerstel & Gianfrani (2005).

 

Isotope units and terminology

 

The measurement of isotopic composition for a particular
element is commonly based on the ratio of the less
abundant isotope of interest to the more abundant isotope.
For nitrogen, for example, this is:

Atom % 

 

15

 

N = [

 

15

 

N/(

 

14

 

N + 

 

15

 

N)] 

 

×

 

 100 or

Atom % 

 

15

 

N = [moles of 

 

15

 

N/(moles of 

 

15

 

N + moles of 

 

14

 

N)] 

 

×

 

 100.

In enrichment experiments, values are generally reported
in atom % 

 

15

 

N or atom percent excess (APE; i.e., enrichment
minus universal value for natural abundance): APE =
sample atom % – reference atom %, whereas atom % 

 

15

 

N

– natural abundance of air N = atom % excess value. The
atom % 

 

15

 

N abundance of atmospheric air is 0.3663
and the universal standard for N. A fertilizer with an
enrichment of 5.000 atom % 

 

15

 

N can also be described
as 4.6337 atom % 

 

15

 

N excess.
In natural abundance studies, values are reported as

ratios referenced against international standards in delta
(

 

δ

 

) units parts per thousand (‰). There are a number of
internationally recognized conventional reference standards
ranging from air to limestone [Pee Dee Belemnite (PDB)]
that are listed in Table 1.

A lower-case 

 

δ

 

 value is defined as the isotopic ratio of
a sample standardized to the isotopic ratio of a defined
reference: [(R

 

S

 

 – R

 

R

 

)/R

 

R

 

] 

 

×

 

 1000 = 

 

δ

 

, which can also be
written as [(R

 

S

 

/R

 

R

 

) – 1] 

 

×

 

 1000 = 

 

δ

 

, where R

 

S

 

 is the isotopic
ratio of the sample and R

 

R

 

 is the isotopic ratio of the reference
standard with R = [atom % 

 

15

 

N/atom % 

 

14

 

N].
Thus, a sample of 0.3700 atom % 

 

15

 

N would be R

 

S

 

 =
0.3700/99.63 = 0.0037137, the R

 

R

 

 of the reference (in this
case air is 0.3663/99.6337 = 0.003676) {[(

 

15

 

N/

 

14

 

N)

 

sample

 

/
(

 

15

 

N/

 

14

 

N)

 

reference

 

] – 1} 

 

×

 

 1000 = [(0.003713/0.003676) – 1] 

 

×

 

1000 = 10.27 

 

δ

 

 

 

15

 

Ν

 

‰ vs. air.
Samples that are depleted in the heavier isotope due

to discrimination against the heavier isotope have negative

 

δ

 

 values.

 

Population studies using enrichment techniques

 

Labelling insects with stable isotopes is an effective marking
method for population studies and tracking using mark–
release–recapture techniques (MRR). Commercially
available compounds enriched with stable isotopes such as

Figure 1 Graphic representation of 
elemental analyser linked to mass 
spectrometer (after Hood & Blair, 2001).
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glucose or amino acids can be easily integrated into the
feeding regimes of laboratory-reared specimens prior to
release at reasonable cost (Table 2). It is also possible to
grow labelled food in 

 

15

 

N-labelled fertilizers or 

 

13

 

C-enriched
atmospheres and then feed the labelled food to the target
organism. Appropriate isotope feeding management is
required to ensure that (i) the isotope label is fixed into
structural body tissue of the target organism, (ii) it is not
‘lost’ through metabolic turnover, and (iii) there are no
toxic effects of labelled compound addition (i.e., the
addition of the compound rather than the label per se may
cause detrimental effects). Preliminary laboratory-based
insect-specific and isotope-specific studies to determine
the most appropriate feeding-management strategies are
therefore essential to optimize labelling. Stable isotope
marking of insects fulfils the marking criteria set out by

Hagler & Jackson (2001), including retention, not affecting
the insect’s fecundity or behaviour, durable, non-toxic,
easily applied, clearly identifiable, and inexpensive. The
latter could be contested in the case of stable isotope
analysis. However, the cost of analysis is comparable to
other modern chemical or molecular analyses. In insect
studies in particular, the costs of the enriched feeding
compounds are not prohibitively expensive and the
comparatively small size of most insects means that whole
insects or specific insect body parts can be analysed, which
reduces sample preparation time and thus cost. For
example, we have estimated that it would cost between
$150–250 to label 1 000 000 

 

Anopheles

 

 mosquitoes with

 

13

 

C-labelled glucose in the larval stages and because
mosquitoes fit neatly into the tins cups, there is minimal
sample preparation time. In the case of mosquitoes, the
larval diet is spiked with a low concentration of highly
labelled glucose solution, which is retained throughout
adult life (Hood-Nowotny et al., 2006).

The principle of MRR techniques is that insects are
collected from the field, labelled in situ or produced in
laboratory colonies, subsequently released back into the
field, and recaptured after a specific period or within a
specific geographical range. The presence of the marker is
examined and the proportion of marked individuals deter-
mined using population models such as the closed system
Lincoln–Petersen model (Service, 1993) or the open sys-
tem Jolly–Seber approach (Hargrove, 2001). One of the
limitations of the isotope technique is that the analysis
methods are usually destructive, thus methods that rely on
repeated capture of marked individuals (Jackson, 1939) are
not possible.

 

Arthropod movement

 

Knowing how far, where, and when insects will move is
central to our understanding of their ecology and biology
and a precondition for effective conservation or control
efforts. It is possible to trace migration, drift, and range

Table 1 R isotopic ratios of reference materials used for delta scales

Element
R isotopic ratio of the reference 
materials used for the delta scales Reference materials used for the delta scales

Carbon 13C/12C 0.0112372 Pee Dee Belemnite (PDB)
*Carbon 13C/12C 0.011224 Vienna Pee Dee Belemnite (VPDB)
Nitrogen 15N/14N 0.0036765 Air (AIR)
Hydrogen 2H/1H 0.00015576 Vienna Standard Mean Ocean Water (VSMOW)
Oxygen 18O/16O 0.0020052 VSMOW
Sulphur 34S/32S 0.0450045 Canyon Diablo Troilite (CDT)
*Sulphur 34S/32S 0.0441626 Vienna Canyon Diablo Troilite (VCDT)

Gröning (2004). *PDB and VPDB are considered equivalent and CDT and VCDT are considered equivalent.

Table 2 Approximate costs (in 2005) of enriched compounds 
that could be useful in biological and ecological studies of 
arthropods

Compound

Approximate 
enrichment 
(%)

Approximate 
cost per gram 
in $

13C-mixed fatty acids 98 200

Amino acids
Glycine-13C 98 95
Aspartic acid-13C 98 300
Leucine-13C 98 200
Valine-13C 98 275
Glycine-15N 98 95
Glycine-13C/15N 98 900
13C6 D-glucose 98 160
13C-UL-fructose 98 315

Water
2H2O 98  0.3
H2

18O 97 195
15NH4Cl 99 40
K15NO3 99 25
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of insects in their natural habitat, using either natural
abundance techniques, which rely on predictable isotopic
variations across landscapes or enrichment techniques, which
require the addition of an isotope label to the system.

 

Arthropod movement studies using the addition 

of an isotopically enriched label

 

Labelling a distinct portion of an ecosystem with stable
isotopes is a useful, minimally invasive method to study
insect dispersal from an ecophysiological perspective
(Macneale et al., 2004, 2005). Using this approach, Hershey
et al. (1993) resolved the drift paradox, a phenomenon
of adult upstream flight that compensates downstream
movement of larval populations of mayflies (

 

Baetis

 

 spp.)
in an Artic river. A section of the river was continuously
labelled with 

 

15

 

N fertilizer over a 2-week period. The
epilithic algae, a major food source for the mayflies,
rapidly assimilated the 

 

15

 

N label. Both nymph and adult
populations were sampled up- and downstream from the
labelling zone. Knowing where the label was applied
and capturing (labelled) individuals at different locations
along the stream allowed the researchers to use modelling
procedures to estimate how far the mayflies had flown
or had been dispersed by wind, etc. It was concluded that
one-third to one-half of the adult population actively
fly or become passively dispersed between 1.6 and 1.9 km
upstream. Similar studies are also possible in terrestrial
settings. These types of labelling experiments may be of
particular use in mosquito ecology studies. For instance,
in northern Sudan it is believed that the Nile acts as a
natural barrier to mosquito dispersal across the river. This
hypothesis could be easily tested by labelling some known
breeding sites with 

 

18

 

O-labelled water and subsequently
collecting mosquitoes on the opposite side of the river and
analysing their 

 

18

 

O content to determine whether cross-
river dispersal occurs. Labelling of water at low isotope
enrichments is easy and safe and labelling plants with
isotopes is also relatively simple. This is achieved by either
growing them in labelled fertilizer or by growing them in

 

13

 

CO

 

2

 

-labelled environments.

 

Natural abundance methods for arthropod 

movement studies

 

Naturally occurring stable isotope markers are useful
as they do not require the pre-marking of individuals.
Specific geographical regions have distinctive isotope
profiles as a consequence of biogeochemical processes.
These can be used to trace the origin and movement of
insects. The most commonly used isotopes are the isotopes
of hydrogen (

 

δ

 

2

 

Η

 

), oxygen (

 

δ

 

18

 

O), carbon (

 

δ

 

13

 

C), nitrogen

(

 

δ

 

15

 

N), and strontium (

 

δ

 

87

 

Sr). 

 

δ

 

2

 

Η

 

 generally decreases with
increasing latitude and altitude due to rainfall patterns and
temperature differences over large geographical ranges.

 

δ

 

18

 

O is higher in summer than winter above latitudes of
30

 

°

 

 and generally decreases with distance from the sea [for
detailed maps of isotopic signature of rainfall see Bowen
et al. (2005) and http://isohis.iaea.org]. 

 

δ

 

18

 

O and 

 

δ

 

2

 

H of
precipitation and snow varies systematically across the
globe (Bowen et al., 2005). 

 

δ

 

13

 

C decreases with increasing
latitude and altitude, and drier habitats are more enriched
(less negative) than wetter habitats with predominantly C

 

3

 

plant species. 

 

δ

 

87

 

Sr signatures vary dependent on concen-
tration of calcium in the soil where calcium-rich soils are
more enriched compared to calcium-poor soils, and older
soils are more enriched than younger soils. It should be
noted that 

 

δ

 

87

 

Sr signatures may also be influenced by
nuclear fall-out.

The oxygen and hydrogen isotope signatures of an insect
will accurately reflect the signature of its water source,
which is usually dependent on the signature of the
weighted average of local precipitation. It should be noted,
however, that processes of evaporation and infiltration can
lead to isotopic discrimination, and ground water and
water bodies may thus have significantly different signals
from the weighted average of precipitation. The carbon
isotope signatures reflect the insect’s diet, although the

 

δ

 

15

 

N signature can also be affected by water availability
and nutritional stress. Both will give some indication of
the organism’s position in the food web (see section on
food-web structure).

 

Use of natural abundance methods to study 

long-distance dispersal

 

Latitudinal differences in 

 

δ

 

13

 

C and 

 

δ

 

2

 

H of food and water
sources have been used to determine the natal origin of
monarch butterflies (

 

Danaus

 

 

 

plexippus

 

 L.) overwintering
in Mexico (Hobson et al., 1999). Initially, isotopic values
in the butterflies were compared with their host plants
and water sources, simply by rearing butterflies on test
milkweed plants irrigated with water of known isotopic
composition. Second, it was assessed whether geographical
patterns in the 

 

δ

 

2

 

Η

 

 and 

 

δ

 

13

 

C values were evident. A co-
ordinated effort of rearing and sampling of adult butterflies,
cultured from eggs reared on rain-fed milkweed host
plants, was undertaken at different locations across the
butterfly’s ecological range throughout the USA. Hobson
et al. (1999) then tested whether the resolution of the isotopic
patterns was sufficient to infer natal origins, and isotopic
maps were drawn. In an additional article (Wassenaar &
Hobson, 1998), the signature of the host plant and adults
were analysed for 

 

δ

 

2

 

H and 

 

δ

 

13

 

C and the natal origins of the

 

eea_572.fm  Page 7  Tuesday, June 12, 2007  4:17 PM

http://isohis.iaea.org]


 

8

 

Hood-Nowotny & Knols

 

butterflies overwintering at 13 locations across Mexico
were extrapolated using isotopic signals.

These studies allowed essential information about the
migration patterns and breeding ranges of the butterflies
to be established. This technique is somewhat limited,
however, to long-range migrations or to studies of move-
ment across isotopic boundaries. Although the number of
long-range migratory insects is limited, it may also be
possible to use the technique to study the transport of
permanent and periodic ectoparasites such as lice, keds
(Hippoboscidae), or ticks on migratory birds or mammals.
Conversely, the insect ectoparasite may be a convenient
subsample for analysis of the migratory history of the host
species. The natural abundance isotope technique could
possibly be used to determine the origin of invasive species
pests and to determine whether insects are transitory
migrants or belong to established resident populations.
For example, it could be possible to determine whether
mosquitoes found on aircraft are native or of non-native
origin (Committee on Air Quality in Passenger Cabins of
Commercial Aircraft et al., 2002); the effectiveness of
these techniques is dependent on the availability, resolu-
tion, and inherent uncertainty of the isotopic data maps.
Stable isotopes are proving to be increasingly useful tools
in wildlife forensics and movement ecology (Bowen et al.,
2005; Holden, 2006).

Studies of natural enemy movement in a pest-management
context using stable isotopes is discussed by Prasifka &
Heinz (2004). They discuss how the difference in isotopic
signals of C

 

3

 

 and C

 

4

 

 plants can be used to study the move-
ment of predators and parasitoids in multicropping systems.
Terrestrial vascular plants differ in their 

 

13

 

C:

 

12

 

C ratios
because of their photosynthetic pathways, C3, C4, or CAM
(crassulacean acid metabolism). C3 plants are so-called
because the first product in their photosynthetic Calvin
cycle pathway is a three-carbon compound (Calvin, 1962).
These plants are generally native in temperate climates
having low light intensity and have typical isotopic values
of around –27 ± 2‰ but range between –25 and –35‰ vs.
PDB, depending on the species and environmental con-
ditions (O’Leary, 1988). Plants such as maize, millet, and
sugar cane have C4 Hatch–Slack photosynthetic pathways
(Hatch & Slack, 1966) and thrive in high light intensity
environments. These have isotopic values of around –13.1
± 1.2‰ and range between –7 to –18‰ vs. PDB, with
maize about –11‰ vs. PDB (O’Leary, 1988). CAM plants
such as succulents or desert plants are generally adapted
to low water environments, and have isotopic values in
between those of C3 and C4, in the range of –10 to –20‰
vs. PDB (O’Leary, 1988). These inherent differences in
isotopic signatures can be useful in diet-switching experi-
ments and when studying the ecology of insects.

Gould et al. (2002) used the isotopic differences in C3

and C4 to prove that, for pink bollworm (Helicoverpa zea
Boddie), local corn can act as a refuge during summer
months and that in autumn nearly all moths captured
originated from C4 hosts although there were none availa-
ble in the area. This confirmed other research suggesting
that the populations migrated in from more northerly
areas, which subsequently allowed development of effec-
tive pest-management strategies with Bt cotton in the area.

Diet analysis and feeding behaviour of arthropods

Isotopic techniques to study feeding behaviours have
distinct advantages over traditional techniques such as gut
content analysis and observation, as these allow for long-
term studies and are generally less time consuming. Using
both natural abundance and labelling techniques, it is
possible to study food-web structure, feeding behaviour,
food preference, and assimilation.

Analysis of food-web structure using natural 

abundance techniques

Isotopic analysis of organisms in a food web provides
information about trophic relationships and will reflect
what a particular organism has eaten, thereby providing an
integrated measure of diet over time. It has been observed
that during food assimilation and excretion, there are
isotopic shifts in enrichment. Based on an extensive body
of literature, McCutchan et al. (2003) suggest that consumers
are typically enriched by about 2.3 ± 0.18‰ ∆δ15N (mean
± SE) and 0.5 ± 0.13‰ ∆δ13C (mean ± SE) (where ∆ denotes
the change in isotope ratio between diet and consumer).
These are slightly different from the values reported earlier
in the literature, ∆δ15N +3‰ and ∆δ13C +1‰, respectively,
which were based on smaller data sets (DeNiro & Epstein,
1978, 1980; O’Leary, 1988). Isotopes of S are also increasingly
being used in a multi-isotope approach and trophic shift in
high-protein diets has been shown to be around 2.0 ±
0.65‰ and in low-protein diet –0.5 ± 0.56‰ (O’Leary,
1988; Kwak & Zedler, 1997; McCutchan et al., 2003;
Bowen et al., 2005). 15N enrichment increases predictably
with trophic level and is used extensively in food-web
construction. Identifying primary producers in the food
web is dependent on the ability to differentiate potential
sources isotopically and may require the use of a multi-
isotope or a multidisciplinary approach.

Kwak & Zedler (1997) highlight that trophic estimates
and trophic position of consumers derived from isotopic
data alone should be interpreted with some caution, as iso-
topic signatures of the consumers are a function of source
mixing as well as trophic enrichment. Observed isotopic
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shifts maybe the result of sample preparation. For exam-
ple, bulk samples may exhibit less isotopic shift than spe-
cific tissues such as muscle tissue (McCutchan et al., 2003).
Carnivores and fluid feeders may exhibit different isotopic
shift patterns to consumers with plant or algal diets
(McCutchan et al., 2003). It should be noted that any pos-
sible contribution from biological atmospheric nitrogen
fixation in a system should be accounted for, as these
organisms will have an isotopic signature that resembles
atmospheric nitrogen (0‰ 15Ν). Isotopic signatures can
also be used to identify atmospheric nitrogen input into
the food web, as demonstrated by Tayasu et al. (1998) in
their study of biological fixation of atmospheric nitrogen
as a nitrogen source in termites. The contribution of
microsymbionts to insect nutrition is a topical question
and is often only inferred from genetic studies. Cook &
Davidson (2006) concluded that stable isotopes can be
useful for quantifying the true nutritional benefits of
microsymbionts and could be done using, for example,
15N2 gas.

The isotopic food-web construction methodology has
been extensively used in marine and terrestrial habitats
(Wada et al., 1991; Kwak & Zedler, 1997; Tayasu et al.,
1998; McCutchan et al., 2003; Wissel & Fry, 2005), despite
the uncertainties inherent in the methodology discussed
above and in a number of publications, which question
the use of a ‘typical’ mean enrichment across trophic
levels (McCutchan et al., 2003; Ruess et al., 2004; Spence
& Rosenheim, 2005; Cook & Davidson, 2006).

Scheu & Falca (2000) studied food webs in forest soil
ecosystems, which included a number of insect species,
and showed that in one of the forests studied the food web
spanned four trophic levels. They concluded that 15N:14N
ratios in most cases reflected trophic structure despite
isotopic differences among species (Neilson et al., 1998;
Ponsard & Arditi, 2000), and they also observed differences
between starved and non-starved individuals (Scrimgeour
et al., 1995; Schmidt et al., 1997). Recent work has shown
that it may also be possible to study the qualitative and
quantitative shifts in food webs, due to environmental
disturbances, with stable isotopes (Caquet, 2006). Iso-
topically labelling primary consumers with enriched
compounds can also be useful in food-web studies, as
this approach may provide clearer pathway distinctions in
complex systems (see below).

Feeding behaviour

Little is known about specific insect–food source
relationships. Tracing energy flows from plant to insect, or
insect to insect, usually requires tedious methods such as
direct observation, gut content analysis, pigment tracing,

or radioactive methods. Stable isotopes offer a safe, rapid,
and direct technique to study feeding behaviour both in
the laboratory and the field. Natural abundance methods
in which primary food sources have inherently different
isotopic signatures, such as C3 and C4 plants, may be used
to study food preferences of insect species (Petelle et al.,
1979; Webb et al., 1998; Prasifka & Heinz, 2004). Food
preferences of a variety of native insects were determined
from the differences in isotopic signatures of C4 and C3

crop plants. Leaf hoppers (Cicadellidae) were shown to
prefer the C3 species with isotopic values in the range of the
C3 plant values, while lace bugs (Tingidae) and tortoise
beetles (Chrysomelidae) had values that were indicative of
feeding from C4 plants (Petelle et al., 1979).

Using multiple isotope ratios of nitrogen and carbon
can provide clearer differences in host diets. Markow et al.
(2000) distinguished between four different host plants
of Drosophila using isotopic signals, and were then able
to isotopically segregate seven wild-caught Drosophila
species, suggesting it would be a useful technique to study
Drosophila resource ecology.

Differences in feeding strategies within species may also
be revealed. For example, Trimble & Sagers (2004) showed
that Azteca constructor Emery ants were more opportunis-
tic foragers of phylosphere fauna at lower elevations in
Costa Rican forests while at higher elevations they relied
more heavily on the resources supplied by their host-plant
species. In addition, specific contribution of orchid extra-
floral nectars to ant diets have been calculated using iso-
topic techniques (Fisher et al., 1990). It is also possible to
determine larval food sources using natural abundance
isotope techniques. Kiyashko et al. (2004) demonstrated
that dipteran larvae (Stictochironomus pictulus Meigen) fed
mainly on methanotrophic bacteria had 13C values ranging
from –57.4 to –62.4 13C ‰ vs. PDB values that are charac-
teristic of methanotrophic bacteria.

In species that have distinct aquatic larval stages, the
signature of the structural tissue with low metabolic rate
may reveal important information about the size and
nature of larval breeding sites, as it is likely that larger
water bodies will be less enriched in 18O and 2H than
smaller ephemeral water bodies. Besides this, the 13C sig-
nature of incoming terrestrial organic matter will also be
different from that of native aquatic plant species. This
could, for example, be useful in studying the location
and characteristics of the breeding sites from which adult
mosquitoes have emerged.

Akamatsu et al. (2004) used the inherent isotopic dif-
ference between aquatic and terrestrial diets to determine
food preference of riparian spiders [Argiope bruennichii
(Araneidae), Nephila clavata (Tetragnathidae), and Tetra-
gnatha praedonia (Tetragnathidae)]. In aquatic environments,
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10 Hood-Nowotny & Knols

the lower diffusion velocity of CO2 in water means that
carbon fractionation is relatively small thus aquatic plants
usually have higher δ13C values compared with terrestrial
plant species (Yoshioka, 1997). In addition, δ14N values
may differ due to differences in nitrogen sources. The con-
tribution of aquatic or terrestrial sources to the spider’s
diet was determined using two-source mixing models:

δ13Cspider – ∆ = δ13Caquatic insect × f + δ13Cterrestrial insect × (1 – f),

where ∆ is isotopic fractionation in carbon during the
feeding process, and f is the relative contribution of the
respective insects to the diet. Using these techniques, it was
shown that more than 50% of the diet of web-building
spiders consisted of aquatic insects. This method is subject
to a number of assumptions: primarily, that the system is
in isotopic equilibrium; second, that the diet composition
and isotopic values of the food resources are constant; and
finally, that the isotopic turnover of consumer tissue is
rapid and reflects temporal changes.

McCutchan et al. (2003) suggest that care should be
taken when the isotopic differences between two different
food sources is small and when comparing isotopic shifts
of samples prepared in different ways. They demonstrated
that the calculated contribution from a specific source may
differ by as much as 30%, depending on whether a trophic
shift of +0.3 or +1.1‰ is assumed in experiments where
food sources differ by only 4‰.

These problems could be overcome using an alternative
end-point mixing model, as this does not require numerical
values for fractionation, which are required by source-
based models, because it assumes fractionation is similar
for all species. The end-point mixing model compares
observed values of a consumer with hypothetical values to
determine if the consumer has eaten 0 or 100% of a parti-
cular resource. Using additional information from other
resident species that feed on known specific diets, it then
attempts to calculate diet constituents from this information
(Lancaster et al., 2005).

Investigations of feeding strategies using 

enrichment techniques

Natural abundance techniques are limited, as they are
dependent on the presence of isotopic differences of food
sources to determine feeding strategies. Labelling of
primary producers or prey with enriched isotopes is an
alternative method to study food preference or food-web
complexities, especially in tritrophic and multitrophic
systems. Almost identical labelled and unlabelled primary
producers or compounds differing in key components
can be grown or formulated (Hood et al., 1999). This

technique has been used to study feeding preference of
adult Anopheles arabiensis Patton mosquitoes, fed sugar
diets supplemented with methylparaben, an antimicrobial
agent widely used in food and pharmaceutical products.
In a simple two-treatment experiment, mosquitoes were
offered a choice of unadulterated sugar water and sugar
water with methylparaben added. 13C glucose was added
as a tracer in Treatment 1 to the unadulterated sugar, and
in Treatment 2 to the methylparaben-amended sugar.
Similar isotopic values of the mosquitoes in the two treat-
ments would have inferred no preference; however, higher
enrichments were seen in mosquitoes in Treatment 1, sug-
gesting there was significant aversion to the methylparaben-
amended sugar waters, particularly from the females,
which are known to be more sensitive to odours (MQ
Benedict, RC Hood-Nowotny, PI Howell & EE Wilkins,
unpubl.).

Labelling plants with nitrogen is relatively simple, as
it is possible to fertilize soil or nutrient solutions with
labelled fertilizer nitrogen in a variety of forms, or glycine
(Unsicker et al., 2005), which the plant will inevitably take
up. It is also possible to label the plant only using stem/tree
injection or leaf-labelling techniques that introduce 15N
into the plant only, allowing soil communities to be studied
(Hood & Blair, 2001). 13C labelling of plants using chamber
or tent systems is relatively simple and could also be used
for such studies (Hood et al., 2004).

Prey–predator relationships in field settings were studied
using 15N-labelled aphids (Sitobion avenae Fabricus). A
range of predator species (Carabidae, Linyphiidae, Staphyli-
nidae, and Coccinellidae) were identified and competitive
relationships were established between species (Nienstedt
& Poehling, 2000, 2004a,b). Fischer et al. (2003) studied
the symbiotic relationship of ants (Pheidole bicornis Forel)
and their Piperaceae host-plant species in natural settings.
In a pulse experiment, ants were fed with highly labelled
15N glycine in situ and the label traced into the ant colony.
In further pulse chase experiments, Fischer et al. (2003)
followed the fate of nitrogen excreted by the ants and
transferred to the host-plant species. Even whole lakes have
been labelled with 13C, demonstrating an ecophysiological
approach (Pace et al., 2004). These studies highlighted
the utility of isotope labelling in natural settings and how
this can be used to study resource allocation and turnover.

To study tritrophic or multitrophic systems, it could be
useful to apply multiple and cross-labelling strategies.
For example, a series of treatments are set up, in which
the primary producer is labelled using 13C or 15N or not
labelled. Primary and secondary consumers are then fed
on the primary producer of the three treatments sepa-
rately. These are then switched so that each treatment
has a 13C-labelled, 15N-labelled, and an unlabelled trophic
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level. By measuring the isotope label in the tertiary con-
sumer, it is possible to determine whether there has been
tritrophic feeding.

Diet assimilation and turnover

Bulk isotopic values of organisms raised on monotonous
diets reflect the isotopic value of the diet, while the bulk
isotopic value of organisms using more than one dietary
source are a weighted average of the isotopic values of the
different sources. Isotopic ratios in the tissues of organisms
are a consequence of food source signature and tissue-
specific fractionation and turnover processes, and therefore
can reveal substantial information about the diet of the
individual (Ostrom et al., 1997; Chamberlain et al., 2004).
Uptake and turnover of specific resources can be calculated
if a number of organisms are initially uniformly labelled
and the change in enrichment, due to dilution effects of
the label from unlabelled sources and loss of label through
excretion or respiration, is monitored over time (Figure 2)
(O’Brien et al., 2000; Hood-Nowotny et al., 2006). It has
been established that turnover rates vary between body
tissues (Tieszen et al., 1983) and that different tissues have
distinctly different isotopic signatures relative to bulk
values (Hobson & Clark, 1992). By switching the isotopic
signature of the diet, it is possible to study the nutrient
uptake of carbon, nitrogen, or sulphur, turnover, and
assimilation in even the smallest of insects such as
Collembola (Chamberlain et al., 2004). The isotopic values
are retained in an isotopic memory related to the source
values, growth, and the rate of turnover (Tieszen et al.,
1983). Examination of isotopic values of different tissues
reveals the temporal history of diet intake, whereas
metabolically active pools such as blood provide
information on recently acquired food resources and
tissues that are more inert (such as cuticle) on longer

timescales (e.g., skeletal tissue). Diet-switching experiments
have been used to study the temporal dynamics of different
tissues of two predacious ladybeetles Harmonia axyridis
and Coccinella septempunctata (Coccinellidae), using aphids
fed on C3 soybean or C4 maize. Isotopic signature in the
body fat and reproductive organs changed rapidly,
suggesting high metabolic rates and, as expected, change
in the isotopic signature was slower in the more
metabolically inert tissues such as wings and cuticle
(Gratton & Forbes, 2006).

In insects with distinct larval stages, structural tissue
may reveal information about larval food sources and
habitats, as evidence suggests that signatures from larval
diets are ‘fixed’ in the insect (Hood-Nowotny et al., 2006).
For example, the European corn borer (Ostrinia nubilalis
Hübner) essentially retain their larval food δ13C signatures
in the wing tissues with only minimal variations (<5%)
owing to adult diets (Ponsard et al., 2004). This informa-
tion could be used to trace back the juvenile habitat of the
insect and control or protect the site. It has been demon-
strated that in insects that grow from a nymph form and
moult, for example, locusts, structural chitin turned over
fastest of all components studied (Webb et al., 1998). These
physiological differences stress that species-specific com-
plimentary isotope studies are important in establishing
underlying mechanisms prior to field application of isotope
techniques.

Compound-specific studies

The rates of dietary incorporation into specific compounds,
such as specific lipids or amino acids, can be established
using compound-specific mass spectrometry, in which
compounds are combusted following separation on a
gas chromatography column (GC-C-MS). These types
of study can lead to a better understanding of the bio-
chemistry of an organism, especially those that are almost
impossible to study using conventional observation and
feeding studies such as Collembola (Chamberlain et al.,
2004). Using these switching-type experiments, it is also
possible to distinguish between assimilation and synthesis
pathways. For example, if all lipids are produced by de
novo synthesis, a similar value δ13C of all lipids would
be expected as they are all derived from the common
constituent acetyl coenzyme A; any deviation from this
value would suggest uptake as opposed to synthesis
(Chamberlain et al., 2004). A similar principle has also
been used to study defence compounds in chrysomelild
beetles (Gastrophysa viridula Degeer and Phaedon
cochleariae Fabricius; Soe et al., 2004) and sex pheromone
biosynthesis in moths (Planotortrix excessana Walker;
Bjostad & Roelofs, 1986).

Figure 2 δ13C of whole mosquito against time after emergence 
(days). T1–T3, 0.5, 2.5, or 5 mg of 99 atom % 13C dried ground 
glucose per gram of larval food, mixed dry; T4, control unlabelled 
larval food only. Bars are ± 1 SD. The dashed lines are modelled 
data (after Hood-Nowotny et al., 2006).
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12 Hood-Nowotny & Knols

Mating and competition

The study of insect mating has traditionally been based
on observation and/or use of fluorescent or radioactive
markers (Dame & Schmidt, 1964; Smittle et al., 1969). In
insects with large spermatophores (a solidified droplet
of sperm and nutritional compounds, which is transferred
from the male to the female during mating), it is possible
to use the natural differences in C3 and C4 diets to study sperm
transfer (Ponsard, 2004). However, in smaller insects,
labelling techniques offer the possibility of tracing
labelled sperm into unlabelled females. Similar studies
using radio isotopes demonstrated the proof of principle
(Smittle et al., 1969). Stable isotopes have the advantage
over radioisotopes that they do not cause detrimental

effects, although deuterium at concentrations of more
than 15% of the diet can prove fatal due to its large relative
mass compared to the lighter isotope and consequent
enzymatic fractionation.

Differences in the isotopic signature of spermatophores
of European corn borers (O. nubilalis) reared on different
C3 and C4 host-plant species were used to determine
whether moths from a specific host species mate only with
other moths from the host species (assortative mating) or
whether there is cross-host-species mating. Initial experi-
ments showed that the signature of the spermatophores
reflected the male larval-host-plant type (Ponsard, 2004).
In field experiments it was also shown that moths that
develop on different host plants exhibit almost absolute
reproductive isolation (Malausa et al., 2005).

Table 3 Summary of isotopic techniques used in entomological studies

Method Insect Reference

Insect marking
Enrichment-13C Mosquitoes Hood-Nowotny et al., 2006
Enrichment-15N Locusts Unsicker et al., 2005

Movement
Enrichment-15N Stoneflies Macneale et al., 2004, 2005
Enrichment-15N Mayflies Hershey et al., 1993
Natural abundance Butterflies Wassenaar & Hobson, 1998; Hobson et al., 1999

Diet analysis and feeding behaviour
Predation
Enrichment-15N Aphids Nienstedt & Poehling, 2000, 2004a,b
Natural abundance Ladybird beetles/aphids Ostrom et al., 1997

Feeding preference
Natural abundance Ants Trimble & Sagers, 2004
Natural abundance Termites Tayasu et al., 1998
Natural abundance Diptera Kiyashko et al., 2004
Natural abundance Ants Fischer et al., 1990
Natural abundance Drosophila Markow et al., 2000

Dietary allocation and turnover
Natural abundance Butterflies Fisher et al., 2004
Natural abundance Moths O’Brien et al., 2000
Enrichment-15N Ants Fischer et al., 2003
Natural abundance Lady beetles Gratton & Forbes, 2006

Food web analysis
Natural abundance Scrimgeour et al., 1995; Ponsard & Arditi, 2000;

Scheu & Falca, 2000
Diet

Natural abundance Locusts Webb et al., 1998
Natural abundance Collembola Chamberlain et al., 2004

Mating
Natural abundance European corn borer Ponsard et al., 2004; Malausa et al., 2005 

Dalecky et al., 2006
Biosynthesis

Natural abundance Beetles Soe et al., 2004
Enrichment-13C and 2H Moths Bjostad & Roelofs, 1986
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Studies of male mosquitoes labelled with 13C have
shown that it is possible to trace the fate of labelled sperm
into female spermathecae (Helinski et al., 2007). These
techniques are particularly useful in mating competition
studies, particularly in semifield settings that attempt to
mimic more holistic systems and that include the presence
of predators, where the presence of fluorescent markers
may influence mating behaviour or predation.

Case study

The broad scope for the potential use of stable isotopes
in ecological and biological studies of insects is evident
from the literature presented above and is summarized in
Table 3. Exploring the potential uses of stable isotopes in
a specific context, such as the malaria/mosquito system,
demonstrates how isotopic techniques could be used to
understand fundamental questions (Figure 3) such as the
ecology of sugar feeding, mating, host seeking, survival,
and oviposition. To study sugar feeding behaviour, the
distinctive isotopic signatures of some plants (such as
biological nitrogen fixers and C3 and C4 plants) could be
used as tracers. Using either natural signatures or isotopically
enriched plants, determination of species preference is
also possible. Resource turnover rates of a labelled
population can be established in semifield and field
settings, thereby providing simple but vital information
in complex systems.

Using highly labelled isotopes for determination of
sperm transfer in the laboratory has been demonstrated
and these techniques could easily be scaled up to semifield
systems. In addition, studying the range and dispersal of
labelled sperm through a population is possible. As most
stable isotopes are non-toxic and are routinely used for
diagnostic purposes in medical research, mosquito-
feeding trials, in which human adults are ‘labelled up’
through supplementary feeding with stable isotopes, may
be useful for host-preference studies, drug and repellent
testing, etc., in ‘real’ environments. A labelled blood source
also provides an easily identifiable point source for post-
feeding dispersal studies. Tracing of labelled blood to
determine resource allocation to the eggs or other tissues
could also provide useful physiological information.

Stable isotope marking allows the study of food-web
structure, resource flow, and predator pressure. Natural
signatures can also be used to provide invaluable informa-
tion about these processes from a holistic perspective. Care
should be taken, however, to understand the processes
contributing to the isotopic signatures in the system.

Identification or assessment of breeding sites using both
natural and artificially induced isotopic signatures may pro-
vide detailed information allowing a strategic approach to
larval control. Isotopes could also be a useful tool to elucidate
larval feeding strategies. Isotopic information stored in slow
turnover tissues of mosquitoes, such as chitin, may provide
valuable information about the natal origin of the mosquitoes.

Figure 3 Potential application of stable isotopes in malaria mosquito research.
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Conclusions

As apparent from this Mini Review, there is a wide range
of potential applications of stable isotopes in arthropod
studies, suggesting a budding branch of learning, which,
coupled with the development of simpler and cheaper
technologies for isotope analysis, could provide the
opportunity of many of the fundamental unknowns of
entomological research to be addressed using an ecosystems
approach. Although the biological and physical processes
that lead to differences in the natural abundance of stable
isotopes provide a valuable tool for entomologists and
ecologists, care should be taken to account for all the
processes that may influence the pattern of isotopic
distribution in the insect’s environment. This in itself
should promote a more holistic understanding of these
processes. Most isotope studies benefit immensely from
more reductionist laboratory-based experiments to
understand specific processes within the system.

The opportunity for the blossoming of ecosystem
entomological research through the application of stable
isotope science is evident; it will require an open-learning,
interdisciplinary approach, motivated by the desire to
understand the role of insects in a complex world.

There are a number of learning resources available to
both the isotope novices and veterans alike. Iso-geochem is
a forum that will field all sorts of questions and queries
(http://list.uvm.edu/cgi-bin/wa?A0=ISOGEOCHEM) and
is read by the majority of isotope scientists (not only geo-
logists). In addition, in most European countries and the
USA, there are mass spectrometry users groups who
usually meet annually to discuss the use of stable isotopes
in diverse fields. For details of the European groups, see the
JESIUM website (http://chemsrv0.pph.univie.ac.at/jesium/).
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