104 research outputs found

    NEMA NU 4-2008 and in vivo imaging performance of RAYCAN trans-PET/CT X5 small animal imaging system

    Get PDF
    The RAYCAN Trans-PET/CT X5 is a preclinical positron emission tomography and computed tomography (PET/CT) system intended for in vivo imaging of rats and mice, featuring all-digital readout electronics for PET data acquisition.The National Electrical Manufacturers Association (NEMA) NU 4-2008 performance evaluation was conducted on the RAYCAN Trans-PET/CT X5 in addition to assessing in vivo imaging performance of the system on live animals. The performance characteristics of the system were evaluated, including system spatial resolution, count rate performance, sensitivity and image quality. The system imaging performance is assessed in dynamic in vivo PET imaging.The system resolution defined as full width half maximum (FWHM) was 2.07 mm, 2.11 mm and 1.31 mm for the tangential, radial and axial resolution, respectively, at the center of the field of view. The peak noise equivalent count rate (NECR) values measured were 61 kcps at 0.19 MBq ml(-1) for the rat size phantom and 126 kcps at 1.53 MBq ml(-1) for the mouse size phantom. Scatter fractions were 24% and 14% for the rat and mouse phantom. The measured peak sensitivity of the system was 1.70%. Image quality in static imaging was deemed sufficient based on the image quality phantom study, with average activity concentration of 155 +/- 8.6 kBq ml(-1) and image uniformity of 5.57% when using two-dimensional filtered backprojection algorithm (2D-FBP). Rods in the image quality phantom were visualized easily up to 2 mm in size. In dynamic in vivo PET imaging, time-activity-curves from several regions were successfully measured, characterizing the radioactivity distribution in myocardial blood pool, liver, left ventricle and the lung.In conclusion, the RAYCAN Trans-PET/CT X5 system can be considered a suitable option for basic imaging needs in preclinical imaging

    Globally consistent climate sensitivity of natural disturbances across boreal and temperate forest ecosystems

    Get PDF
    Disturbance regimes are changing in forests across the world in response to global climate change. Despite the profound impacts of disturbances on ecosystem services and biodiversity, assessments of disturbances at the global scale remain scarce. Here, we analyzed natural disturbances in boreal and temperate forest ecosystems for the period 2001-2014, aiming to 1) quantify their within- and between-biome variation and 2) compare the climate sensitivity of disturbances across biomes. We studied 103 unmanaged forest landscapes with a total land area of 28.2 x 10(6) ha, distributed across five continents. A consistent and comprehensive quantification of disturbances was derived by combining satellite-based disturbance maps with local expert knowledge of disturbance agents. We used Gaussian finite mixture models to identify clusters of landscapes with similar disturbance activity as indicated by the percent forest area disturbed as well as the size, edge density and perimeter-area-ratio of disturbed patches. The climate sensitivity of disturbances was analyzed using Bayesian generalized linear mixed effect models and a globally consistent climate dataset. Within-biome variation in natural disturbances was high in both boreal and temperate biomes, and disturbance patterns did not vary systematically with latitude or biome. The emergent clusters of disturbance activity in the boreal zone were similar to those in the temperate zone, but boreal landscapes were more likely to experience high disturbance activity than their temperate counterparts. Across both biomes high disturbance activity was particularly associated with wildfire, and was consistently linked to years with warmer and drier than average conditions. Natural disturbances are a key driver of variability in boreal and temperate forest ecosystems, with high similarity in the disturbance patterns between both biomes. The universally high climate sensitivity of disturbances across boreal and temperate ecosystems indicates that future climate change could substantially increase disturbance activity.Peer reviewe

    Adenovirus DNA in Guthrie cards from children who develop acute lymphoblastic leukaemia (ALL)

    Get PDF
    Aims: The aim of this thesis was to increase understanding of how molecular processes influence the development and risk assessment of childhood leukemia. Studies I and II investigates whether a specific virus infection in utero could be involved in a “first hit” in leukemogenesis. Studies III and IV examine whether alterations in protein expression from cell cycle regulating genes may predict a relapse in children with myeloid malignancies undergoing hematopoietic stem cell transplantation (HSCT). Background: Genetic alterations, analyzed at time of diagnosis in children who develop leukemia, have been traced back to neonatal dried blood spots (DBS). This suggests that the majority of chromosome translocations occur in utero during fetal hematopoiesis, generating a “first hit”. A “second hit” is then required to generate a leukemic clone. Today, experiments in vitro, animal models, and clinical observations have revealed that several viruses are oncogenic and capable of initiating a genetic alteration. Smith M postulated the theory that an in utero infection might be the “first hit”, causing genetic aberrations that could later lead to the development of the leukemic clone, which is supported by the early age of onset and space-time clustering data, based on time, place of birth, and diagnosis. Leukemia develops as a result of hematopoietic or lymphoid tissue with uncontrolled cell division. Normally cell division is controlled by the cell cycle, the network of which is complex with numerous regulating proteins both up and down stream, but also containing several feedback loops. The important regulators of this process are tumor suppressor genes, essential for normal cell proliferation and differentiation as well as for controlling DNA integrity. Errors in these genes or their protein expression affect the ability of the cell to check for DNA damage, thus tumors may occur. Proteins from these genes could serve as prognostic markers and predict relapse. Methods: In studies I and II we investigated neonatal DBS by PCR for the presence of adenovirus DNA (243 samples) and the three newly discovered polyomaviruses (50 samples) from children who later developed leukemia but also from controls (486 and 100 samples respectively). In studies III and IV we explored the expression of one (p53) respectively four (p53, p21, p16 and PTEN) cell cycle regulating proteins in bone marrow at diagnosis as well as pre and post HSCT in myeloid malignancies in children. We retrospectively collected clinical data and bone marrow samples from 33 children diagnosed with chronic myeloid malignancies (MDS, JMML and CML), 34 children diagnosed with AML as well as 55 controls. The samples were prepared by tissue micro array (TMA) as well as immunohistochemistry and examined for protein expression in a light microscope. Results: In study I we detected adenovirus DNA in only two patients who later developed leukemia, but in none of the controls. In study II all the samples were negative for KIPyV, WUPyV and MCPyV DNA in both patients and controls. In study III we found an overexpression of p53 protein at diagnosis that significantly predicted relapse after HSCT in children with rare chronic myeloid malignancies. In study IV a significantly higher p53 expression was found in the relapse compared to the non-relapse group at six months post HSCT in children with AML, suggesting that p53 may be used as prognostic markers for predicting a relapse. In addition, the calculated cut off level for p53 at diagnosis (study III) and at six months (study IV) post HSCT was approximately 20%, which indicates that a p53 expression over 20% may predict relapse in children with myeloid malignancies. Conclusion: Although we did not find an association between adenoviruses or the three newly discovered polyomaviruses and the development of childhood leukemia, a virus could still be involved in this process; the virus may have escaped detection, other new viruses could be involved or a virus could precipitate the “second hit”. We suggest that evaluation of p53 protein expression may be used as a supplement to regular prognostic markers both pre and post HSCT. To further evaluate this, a prospective multicenter study has been started

    Evaluation of image quality with four positron emitters and three preclinical PET/CT systems

    Get PDF
    Background We investigated the image quality of C-11, Ga-68, F-18 and Zr-89, which have different positron fractions, physical half-lifes and positron ranges. Three small animal positron emission tomography/computed tomography (PET/CT) systems were used in the evaluation, including the Siemens Inveon, RAYCAN X5 and Molecubes beta-cube. The evaluation was performed on a single scanner level using the national electrical manufacturers association (NEMA) image quality phantom and analysis protocol. Acquisitions were performed with the standard NEMA protocol for F-18 and using a radionuclide-specific acquisition time for C-11, Ga-68 and Zr-89. Images were assessed using percent recovery coefficient (%RC), percentage standard deviation (%STD), image uniformity (%SD), spill-over ratio (SOR) and evaluation of image quantification. Results Ga-68 had the lowest %RC ( 85%) and lowest %STD for the 5 mm rod across all systems. For C-11 and Zr-89, the maximum %RC was close (> 76%) to the %RC with F-18. A larger SOR were measured in water with C-11 and Ga-68 compared to F-18 on all systems. SOR in air reflected image reconstruction and data correction performance. Large variation in image quantification was observed, with maximal errors of 22.73% (Zr-89, Inveon), 17.54% (Zr-89, RAYCAN) and - 14.87% (Ga-68, Molecubes). Conclusions The systems performed most optimal in terms of NEMA image quality parameters when using F-18, where C-11 and Zr-89 performed slightly worse than F-18. The performance was least optimal when using Ga-68, due to large positron range. The large quantification differences prompt optimization not only by terms of image quality but also quantification. Further investigation should be performed to find an appropriate calibration and harmonization protocol and the evaluation should be conducted on a multi-scanner and multi-center level

    NR4A Gene Expression Is Dynamically Regulated in the Ventral Tegmental Area Dopamine Neurons and Is Related to Expression of Dopamine Neurotransmission Genes

    Get PDF
    The NR4A transcription factors NR4A1, NR4A2, and NR4A3 (also known as Nur77, Nurr1, and Nor1, respectively) share similar DNA-binding properties and have been implicated in regulation of dopamine neurotransmission genes. Our current hypothesis is that NR4A gene expression is regulated by dopamine neuron activity and that induction of NR4A genes will increase expression of dopamine neurotransmission genes. Eticlopride and γ-butyrolactone (GBL) were used in wild-type (+/+) and Nurr1-null heterozygous (+/−) mice to determine the mechanism(s) regulating Nur77 and Nurr1 expression. Laser capture microdissection and real-time PCR was used to measure Nurr1 and Nur77 mRNA levels in the ventral tegmental area (VTA). Nur77 expression was significantly elevated 1 h after both GBL (twofold) and eticlopride (fourfold). In contrast, GBL significantly decreased Nurr1 expression in both genotypes, while eticlopride significantly increased Nurr1 expression only in the +/+ mice. In a separate group of mice, haloperidol injection significantly elevated Nur77 and Nor1, but not Nurr1 mRNA in the VTA within 1 h and significantly increased tyrosine hydroxylase (TH) and dopamine transporter (DAT) mRNA expression by 4 h. These data demonstrate that the NR4A genes are dynamically regulated in dopamine neurons with maintenance of Nurr1 expression requiring dopamine neuron activity while both attenuation of dopamine autoreceptors activation and dopamine neuronal activity combining to induce Nur77 expression. Additionally, these data suggest that induction of NR4A genes could regulate TH and DAT expression and ultimately regulate dopamine neurotransmission

    Aurintricarboxylic acid prevents GLUR2 mRNA down-regulation and delayed neurodegeneration in hippocampal CA1 neurons of gerbil after global ischemia

    Full text link
    Aurintricarboxylic acid (ATA), an inhibitor of endonuclease activity and other protein–nucleic acid interactions, blocks apoptosis in several cell types and prevents delayed death of hippocampal pyramidal CA1 neurons induced by transient global ischemia. Global ischemia in rats and gerbils induces down-regulation of GluR2 mRNA and increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced Ca(2+) influx in CA1 before neurodegeneration. This result and neuroprotection by antagonists of AMPA receptors suggests that formation of AMPA receptors lacking GluR2, and therefore Ca(2+) permeable, leads to excessive Ca(2+) influx in response to endogenous glutamate; the resulting delayed neuronal death in CA1 exhibits many characteristics of apoptosis. In this study, we examined the effects of ATA on expression of mRNAs encoding glutamate receptor subunits in gerbil hippocampus after global ischemia. Administration of ATA by injection into the right cerebral ventricle 1 h before (but not 6 h after) bilateral carotid occlusion prevented the ischemia-induced decrease in GluR2 mRNA expression and the delayed neurodegeneration. These findings suggest that ATA is neuroprotective in ischemia by blocking the transcriptional changes leading to down-regulation of GluR2, rather than by simply blocking endonucleases, which presumably act later after Ca(2+) influx initiates apoptosis. Maintaining formation of Ca(2+) impermeable, GluR2 containing AMPA receptors could prevent delayed death of CA1 neurons after transient global ischemia, and block of GluR2 down-regulation may provide a further strategy for neuroprotection

    Effect of St. John's Wort (Hypericum perforatum) treatment on restraint stress-induced behavioral and biochemical alteration in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A stressful stimulus is a crucial determinant of health and disease. Antidepressants are used to manage stress and their related effects. The present study was designed to investigate the effect of St. John's Wort (<it>Hypericum perforatum</it>) in restraint stress-induced behavioral and biochemical alterations in mice.</p> <p>Methods</p> <p>Animals were immobilized for a period of 6 hr. St. John's Wort (50 and 100 mg/kg) was administered 30 minutes before the animals were subjecting to acute immobilized stress. Various behavioral tests parameters for anxiety, locomotor activity and nociceptive threshold were assessed followed by biochemical assessments (malondialdehyde level, glutathione, catalase, nitrite and protein) subsequently.</p> <p>Results</p> <p>6-hr acute restraint stress caused severe anxiety like behavior, antinociception and impaired locomotor activity as compared to unstressed animals. Biochemical analyses revealed an increase in malondialdehyde, nitrites concentration, depletion of reduced glutathione and catalase activity as compared to unstressed animal brain. Five days St. John's Wort treatment in a dose of 50 mg/kg and 100 mg/kg significantly attenuated restraint stress-induced behavioral (improved locomotor activity, reduced tail flick latency and antianxiety like effect) and oxidative damage as compared to control (restraint stress).</p> <p>Conclusion</p> <p>Present study highlights the modest activity of St. John's Wort against acute restraint stress induced modification.</p

    Genomic organization and alternative splicing of the human and mouse RPTPρ genes

    Get PDF
    BACKGROUND: Receptor protein tyrosine phosphatase rho (RPTPρ, gene symbol PTPRT) is a member of the type IIB RPTP family. These transmembrane molecules have been linked to signal transduction, cell adhesion and neurite extension. The extracellular segment contains MAM, Ig-like and fibronectin type III domains, and the intracellular segment contains two phosphatase domains. The human RPTPρ gene is located on chromosome 20q12-13.1, and the mouse gene is located on a syntenic region of chromosome 2. RPTPρ expression is restricted to the central nervous system. RESULTS: The cloning of the mouse cDNA, identification of alternatively spliced exons, detection of an 8 kb 3'-UTR, and the genomic organization of human and mouse RPTPρ genes are described. The two genes are comprised of at least 33 exons. Both RPTPρ genes span over 1 Mbp and are the largest RPTP genes characterized. Exons encoding the extracellular segment through the intracellular juxtamembrane 'wedge' region are widely spaced, with introns ranging from 9.7 to 303.7 kb. In contrast, exons encoding the two phosphatase domains are more tightly clustered, with 15 exons spanning ∼ 60 kb, and introns ranging in size from 0.6 kb to 13.1 kb. Phase 0 introns predominate in the intracellular, and phase 1 in the extracellular segment. CONCLUSIONS: We report the first genomic characterization of a RPTP type IIB gene. Alternatively spliced variants may result in different RPTPρ isoforms. Our findings suggest that RPTPρ extracellular and intracellular segments originated as separate modular proteins that fused into a single transmembrane molecule during a later evolutionary period

    Genomic structure and alternative splicing of murine R2B receptor protein tyrosine phosphatases (PTPκ, μ, ρ and PCP-2)

    Get PDF
    BACKGROUND: Four genes designated as PTPRK (PTPκ), PTPRL/U (PCP-2), PTPRM (PTPμ) and PTPRT (PTPρ) code for a subfamily (type R2B) of receptor protein tyrosine phosphatases (RPTPs) uniquely characterized by the presence of an N-terminal MAM domain. These transmembrane molecules have been implicated in homophilic cell adhesion. In the human, the PTPRK gene is located on chromosome 6, PTPRL/U on 1, PTPRM on 18 and PTPRT on 20. In the mouse, the four genes ptprk, ptprl, ptprm and ptprt are located in syntenic regions of chromosomes 10, 4, 17 and 2, respectively. RESULTS: The genomic organization of murine R2B RPTP genes is described. The four genes varied greatly in size ranging from ~64 kb to ~1 Mb, primarily due to proportional differences in intron lengths. Although there were also minor variations in exon length, the number of exons and the phases of exon/intron junctions were highly conserved. In situ hybridization with digoxigenin-labeled cRNA probes was used to localize each of the four R2B transcripts to specific cell types within the murine central nervous system. Phylogenetic analysis of complete sequences indicated that PTPρ and PTPμ were most closely related, followed by PTPκ. The most distant family member was PCP-2. Alignment of RPTP polypeptide sequences predicted putative alternatively spliced exons. PCR experiments revealed that five of these exons were alternatively spliced, and that each of the four phosphatases incorporated them differently. The greatest variability in genomic organization and the majority of alternatively spliced exons were observed in the juxtamembrane domain, a region critical for the regulation of signal transduction. CONCLUSIONS: Comparison of the four R2B RPTP genes revealed virtually identical principles of genomic organization, despite great disparities in gene size due to variations in intron length. Although subtle differences in exon length were also observed, it is likely that functional differences among these genes arise from the specific combinations of exons generated by alternative splicing

    Dissecting the transcriptional networks underlying breast cancer: NR4A1 reduces the migration of normal and breast cancer cell lines

    Get PDF
    Introduction: Breast cancer currently accounts for more than one-quarter of all female cancers and, despite the great progress in treatment observed in the past few years, the need for identification of new gene targets that can be used for diagnosis, prognosis and therapy is evident. A previous study identified the transcription factor NR4A1 as a gene upregulated in primary breast cancer compared with normal tissue by microarray analysis and sequencing technologies. The purpose of the study was to identify the role of NR4A1 in normal mammary epithelial and breast cancer cell biology.Methods: NR4A1 expression in breast tumours was assessed by semiquantitative and real-time PCR using RNA from normal and tumour samples or breast cancer cell lines. Immunohistochemistry on tissue microarrays was performed to check NR4A1 protein expression in breast tumours. MCF-10A and 226L normal mammary epithelial cells as well as the tumour lines PMC42, ZR-75-1 and MDA-MB-231 were transduced with full-length NR4A1, and the ability of NR4A1-overexpressing cells to migrate was tested using scratch wound or transwell migration assays. Proliferation was measured using the MTT and BrdU assays, while apoptosis was determined by the Annexin V assay. The ability of the cells to adhere to extracellular matrix was tested by adhesion assays and integrin cell surface expression was measured by flow cytometry. Activation of the FAK as well as ERK1/2 and PI3K pathways was checked by western blotting.Results: Breast tissue microarray analysis showed NR4A1 expression in primary tumours, which was reduced in higher grade and metastatic tumours. Ectopic expression of NR4A1 in MCF-10A, 226L, PMC42 and ZR-75-1 cells led to reduced ability of the cells to migrate, while no differences were observed in their proliferation and apoptotic index. NR4A1 expression altered the ability of the MCF-10A cells to adhere to the extracellular matrix and affected cell surface expression of integrins.Conclusions: NR4A1 acts as an antimigratory factor in two normal mammary epithelial and two breast cancer cell lines tested. It is therefore possible that NR4A1 acts as an antimigratory factor in breast tumours, and further studies should be conducted to understand the mechanisms involved
    corecore