83 research outputs found

    Co-production in primary schools: a systematic literature review

    Get PDF
    Co-production is the involvement of citizens in the design and delivery of services. In primary schools, this involves parents working with teachers to improve the educational development of their children. In this contribution, we present the results of a systematic literature review on co-production in primary schools to establish what research has been conducted and to what extent there is evidence on the effectiveness of co-production in this context. After three subsequent steps of literature selection, an initial database of 3121 articles was reduced to 122 articles which were then carefully analysed. Generally, co-production in education tends to be aimed at specific groups, which makes it hard to generalize, but some findings appear more generally applicable. Co-production does appear to improve students’ knowledge acquisition. Parent–teacher relationships can be difficult and ambiguous, but teacher training appears to be an effective tool for improving co-production.The politics and administration of institutional chang

    Comparison of measured and predicted performance of a SIS waveguide mixer at 345 GHz

    Get PDF
    The measured gain and noise of a SIS waveguide mixer at 345 GHz have been compared with theoretical values, calculated from the quantum mixer theory using a three port model. As a mixing element, we use a series array of two Nb-Al2O3-Nb SIS junctions. The area of each junction is 0.8 sq microns and the normal state resistance is 52 omega. The embedding impedance of the mixer has been determined from the pumped DC-IV curves of the junction and is compared to results from scale model measurements (105 x). Good agreement was obtained. The measured mixer gain, however, is a factor of 0.45 plus or minus 0.5 lower than the theoretical predicted gain. The measured mixer noise temperature is a factor of 4-5 higher than the calculated one. These discrepancies are independent on pump power and are valid for a broad range of tuning conditions

    A low noise 410-495 heterodyne two tuner mixer, using submicron Nb/Al2O3/Nb tunneljunctions

    Get PDF
    A 410-495 GHz heterodyne receiver, with an array of two Nb/Al2O3/Nb tunneljunctions as mixing element is described. The noise temperature of this receiver is below 230 K (DSB) over the whole frequency range, and has lowest values of 160 K in the 435-460 GHz range. The calculated DSB mixergain over the whole frequency range varies from -11.9 plus or minus 0.6 dB to -12.6 plus or minus 0.6 dB and the mixer noise is 90 plus or minus 30 K

    Terahertz hot electron bolometer waveguide mixers for GREAT

    Full text link
    Supplementing the publications based on the first-light observations with the German Receiver for Astronomy at Terahertz frequencies (GREAT) on SOFIA, we present background information on the underlying heterodyne detector technology. We describe the superconducting hot electron bolometer (HEB) detectors that are used as frequency mixers in the L1 (1400 GHz), L2 (1900 GHz), and M (2500 GHz) channels of GREAT. Measured performance of the detectors is presented and background information on their operation in GREAT is given. Our mixer units are waveguide-based and couple to free-space radiation via a feedhorn antenna. The HEB mixers are designed, fabricated, characterized, and flight-qualified in-house. We are able to use the full intermediate frequency bandwidth of the mixers using silicon-germanium multi-octave cryogenic low-noise amplifiers with very low input return loss. Superconducting HEB mixers have proven to be practical and sensitive detectors for high-resolution THz frequency spectroscopy on SOFIA. We show that our niobium-titanium-nitride (NbTiN) material HEBs on silicon nitride (SiN) membrane substrates have an intermediate frequency (IF) noise roll-off frequency above 2.8 GHz, which does not limit the current receiver IF bandwidth. Our mixer technology development efforts culminate in the first successful operation of a waveguide-based HEB mixer at 2.5 THz and deployment for radioastronomy. A significant contribution to the success of GREAT is made by technological development, thorough characterization and performance optimization of the mixer and its IF interface for receiver operation on SOFIA. In particular, the development of an optimized mixer IF interface contributes to the low passband ripple and excellent stability, which GREAT demonstrated during its initial successful astronomical observation runs.Comment: Accepted for publication in A&A (SOFIA/GREAT special issue

    Atomic Carbon in M82: Physical conditions derived from simultaneous observations of the [CI] fine structure submillimeter wave transitions

    Get PDF
    We report the first extragalactic detection of the neutral carbon [CI] 3P2-3P1 fine structure line at 809 GHz. The line was observed towards M82 simultaneously with the 3P1-3P0 line at 492 GHz, providing a precise measurement of the J=2-1/J=1-0 integrated line ratio of 0.96 (on a [K km s^-1] -scale). This ratio constrains the [CI] emitting gas to have a temperature of at least 50 K and a density of at least 10^4 cm^-3. Already at this minimum temperature and density, the beam averaged CI-column density is large, 2.1 10^18 cm^-2, confirming the high CI/CO abundance ratio of approximately 0.5 estimated earlier from the 492 GHz line alone. We argue that the [CI] emission from M82 most likely arises in clouds of linear size around a few pc with a density of about 10^4 cm^-3 or slightly higher and temperatures of 50 K up to about 100 K.Comment: 4 pages, 2 figures, ApJL in press, postscript also available at ftp://apollo.ph1.uni-koeln.de/pub/stutzki/m82_pap.ps.gz e-mail-contact:[email protected]

    [12CII] and [13CII] 158 mum emission from NGC 2024: Large column densities of ionized carbon

    Full text link
    Context: We analyze the NGC 2024 HII region and molecular cloud interface using [12CII] and [13CII] observations. Aims: We attempt to gain insight into the physical structure of the interface layer between the molecular cloud and the HII region. Methods. Observations of [12CII] and [13CII] emission at 158 {\mu}m with high spatial and spectral resolution allow us to study the detailed structure of the ionization front and estimate the column densities and temperatures of the ionized carbon layer in the PDR. Results: The [12CII] emission closely follows the distribution of the 8 mum continuum. Across most of the source, the spectral lines have two velocity peaks similar to lines of rare CO isotopes. The [13CII] emission is detected near the edge-on ionization front. It has only a single velocity component, which implies that the [12CII] line shape is caused by self-absorption. An anomalous hyperfine line-intensity ratio observed in [13CII] cannot yet be explained. Conclusions: Our analysis of the two isotopes results in a total column density of N(H)~1.6\times10^23 cm^-2 in the gas emitting the [CII] line. A large fraction of this gas has to be at a temperature of several hundred K. The self-absorption is caused by a cooler (T<=100 K) foreground component containing a column density of N(H)~10^22 cm^-2

    Observation of Andreev Reflection Enhanced Shot Noise

    Full text link
    We have experimentally investigated the quasiparticle shot noise in NbN/MgO/NbN superconductor - insulator - superconductor tunnel junctions. The observed shot noise is significantly larger than theoretically expected. We attribute this to the occurrence of multiple Andreev reflection processes in pinholes present in the MgO barrier. This mechanism causes the current to flow in large charge quanta (Andreev clusters), with a voltage dependent average value of m = 1+ 2 Delta/eV times the electron charge. Because of this charge enhancement effect, the shot noise is increased by the factor m.Comment: 4 pages, 5 figures include

    First observations with CONDOR, a 1.5 THz heterodyne receiver

    Get PDF
    The THz atmospheric windows centered at roughly 1.3 and 1.5~THz, contain numerous spectral lines of astronomical importance, including three high-J CO lines, the N+ line at 205 microns, and the ground transition of para-H2D+. The CO lines are tracers of hot (several 100K), dense gas; N+ is a cooling line of diffuse, ionized gas; the H2D+ line is a non-depleting tracer of cold (~20K), dense gas. As the THz lines benefit the study of diverse phenomena (from high-mass star-forming regions to the WIM to cold prestellar cores), we have built the CO N+ Deuterium Observations Receiver (CONDOR) to further explore the THz windows by ground-based observations. CONDOR was designed to be used at the Atacama Pathfinder EXperiment (APEX) and Stratospheric Observatory For Infrared Astronomy (SOFIA). CONDOR was installed at the APEX telescope and test observations were made to characterize the instrument. The combination of CONDOR on APEX successfully detected THz radiation from astronomical sources. CONDOR operated with typical Trec=1600K and spectral Allan variance times of 30s. CONDOR's first light observations of CO 13-12 emission from the hot core Orion FIR4 (= OMC1 South) revealed a narrow line with T(MB) = 210K and delta(V)=5.4km/s. A search for N+ emission from the ionization front of the Orion Bar resulted in a non-detection. The successful deployment of CONDOR at APEX demonstrates the potential for making observations at THz frequencies from ground-based facilities.Comment: 4 pages + list of objects, 3 figures, to be published in A&A special APEX issu
    • …
    corecore