31 research outputs found

    Analysis on the Settlement of Adjacent Buildings Caused by the Underpassing Construction of the Biased Tunnel

    Get PDF
    Through the simulation analysis of the settlement and deformation law of the surface buildings caused by the construction of the biased tunnel, the following points are obtained: (1) The Peak formula is revised, and the influence range of the biased tunnel is predicted based on the formula. (2) It is concluded that when the tunnel is biased, the position of maximum deformation caused by ground settlement is generally in a parallel area 0.5 times the buried depth from the center line of the tunnel. (3) Through the double-layer verification of simulation analysis and monitoring measurement data, prior to the construction of buildings with similar weak foundations, their foundations should be reinforced in advance. (4) In the process of this simulation, the complicated influence of water pressure on tunnel excavation was not considered, which can be further optimized in the later stage

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Acoustic Characterization for The Feeding Activities of <i>Haliotis discus Hannai</i>

    No full text
    In order to analyze the sound production mechanism and the acoustic characteristics of Haliotis discus hannai during feeding, this paper proposes a multi-source information fusion approach combining passive acoustics with videos. In the experiments, abalones with a shell length of 60 ± 2.7 mm were divided into two groups: Group A was fed with fresh macro algae Gracilaria lemaneiformis as food once each day; Group B was placed on a small amount of sand as impurities at the bottom of the tank. As control groups, Group C did not have abalone or food and Group D did not have abalones but food was added. The eating acoustic signals of abalone were mainly concentrated in the frequency range between 9.49 kHz and 44.36 kHz, wherein the peak frequency is 37.86 ± 2.55 kHz, with the maximum energy −66.43 ± 5.17 dBm/Hz. Each pulse sequence is with a duration of 119.12 ± 70.51 ms and consists of several sub-pulses. Nearly 70% of the pulse sequences consist of 1~2 sub-pulses and the duration of the pulse containing one sub-pulse is 42.62 ± 19.72 ms. The eating rate was kept at 0.61 ± 0.04 times/min at the beginning and was decreased significantly to 0.48 ± 0.08 times/min after 60 min. Note that the characteristic analysis of abalone acoustic signals during feeding are first reported in this manuscript to the best of our knowledge, and this paper also demonstrates that the sound of abalone is produced by scraping and grinding food with radula. Because the eating rate decreases with the reduction in the abalone’s level of hunger, the results may be used as an acoustic indicator of feeding strategy for the abalone aquaculture industry

    Analysis on the Settlement of Adjacent Buildings Caused by the Underpassing Construction of the Biased Tunnel

    No full text
    Through the simulation analysis of the settlement and deformation law of the surface buildings caused by the construction of the biased tunnel, the following points are obtained: (1) The Peak formula is revised, and the influence range of the biased tunnel is predicted based on the formula. (2) It is concluded that when the tunnel is biased, the position of maximum deformation caused by ground settlement is generally in a parallel area 0.5 times the buried depth from the center line of the tunnel. (3) Through the double-layer verification of simulation analysis and monitoring measurement data, prior to the construction of buildings with similar weak foundations, their foundations should be reinforced in advance. (4) In the process of this simulation, the complicated influence of water pressure on tunnel excavation was not considered, which can be further optimized in the later stage

    Experimental Study on Carbonation Durability of Kaolin Strengthened with Slag Portland Cement

    No full text
    Slag Portland cement is an environmentally friendly and energy-saving product, which is widely used in cement-reinforced soil. This study used slag Portland cement-reinforced soil as the research object and P.O 42.5 + kaolin (POK) as the reference group. The carbonation depth and strength of P.S.A 42.5 + kaolin (PSK) at different curing times were analyzed using carbonation depth, uniaxial ground pressure strength, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The test results show the following: (1) The active substances in PSK samples can react with calcium hydroxide produced during cement hydration and can reduce the content of OH&minus;. The PSK samples react with OH&minus; and CO2 in the carbonation environment. Both processes considerably reduce the content of OH&minus;. (2) Due to the decrease in OH&minus; content, the carbonation durability of slag Portland cement-reinforced soil is significantly less than that of ordinary Portland cement. (3) The carbonation of slag Portland cement-reinforced soil improves its strength. (4) The results of SEM + EDS and XRD confirm the carbonation depth and strength of the POK and PSK samples. The results show that PSK has important applications in subgrade or building grouting materials and in cement-soil mixing piles (walls)

    The Design and Technology Development of the JUNO Central Detector

    No full text
    International audienceThe Jiangmen Underground Neutrino Observatory (JUNO) is a large scale neutrino experiment with multiple physics goals including deter mining the neutrino mass hierarchy, the accurate measurement of neutrino oscillation parameters, the neutrino detection from the super nova, the Sun, and the Earth, etc. JUNO puts forward physically and technologically stringent requirements for its central detector (CD), including a large volume and target mass (20 kt liquid scintillator, LS), a high energy resolution (3% at 1 MeV), a high light transmittance, the largest possible photomultiplier (PMT) coverage, the lowest possible radioactive background, etc. The CD design, using a spherical acrylic vessel with a diameter of 35.4 m to contain the LS and a stainless steel structure to support the acrylic vessel and PMTs, was chosen and optimized. The acrylic vessel and the stainless steel structure will be immersed in pure water to shield the radioactive back ground and bear great buoyancy. The challenging requirements of the acrylic sphere have been achieved, such as a low intrinsic radioactivity and high transmittance of the manufactured acrylic panels, the tensile and compressive acrylic node design with embedded stainless steel pad, one-time polymerization for multiple bonding lines. Moreover, several technical challenges of the stainless steel structure have been solved: the production of low radioactivity stainless steel material, the deformation and precision control during production and assembly, the usage of high strength stainless steel rivet bolt and of high friction efficient linkage plate. Finally, the design of the ancillary equipment like the LS filling, overflowing and circulating system was done
    corecore