13 research outputs found

    Direct field-to-pattern monolithic design of holographic metasurface via residual encoder-decoder convolutional neural network

    Get PDF
    Complex-amplitude holographic metasurfaces (CAHMs) with the flexibility in modulating phase and amplitude profiles have been used to manipulate the propagation of wavefront with an unprecedented level, leading to higher image-reconstruction quality compared with their natural counterparts. However, prevailing design methods of CAHMs are based on Huygens-Fresnel theory, meta-atom optimization, numerical simulation and experimental verification, which results in a consumption of computing resources. Here, we applied residual encoder-decoder convolutional neural network to directly map the electric field distributions and input images for monolithic metasurface design. A pretrained network is firstly trained by the electric field distributions calculated by diffraction theory, which is subsequently migrated as transfer learning framework to map the simulated electric field distributions and input images. The training results show that the normalized mean pixel error is about 3% on dataset. As verification, the metasurface prototypes are fabricated, simulated and measured. The reconstructed electric field of reverse-engineered metasurface exhibits high similarity to the target electric field, which demonstrates the effectiveness of our design. Encouragingly, this work provides a monolithic field-to-pattern design method for CAHMs, which paves a new route for the direct reconstruction of metasurfaces

    Multiple Strategies Based Salp Swarm Algorithm for Optimal Operation of Multiple Hydropower Reservoirs

    No full text
    Reasonable optimal operation policy for complex multiple reservoir systems is very important for the safe and efficient utilization of water resources. The operation policy of multiple hydropower reservoirs should be optimized to maximize total hydropower generation, while ensuring flood control safety by effective and efficient storage and release policy of multiple reservoirs. To achieve this goal, a new meta-heuristic algorithm, salp swarm algorithm (SSA), is used to optimize the joint operation of multiple hydropower reservoirs for the first time. SSA is a competitive bio-inspired optimizer, which has received substantial attention from researchers in a wide variety of applications in finance, engineering, and science because of its little controlling parameters and adaptive exploratory behavior. However, it still faces few drawbacks such as lack of exploitation and local optima stagnation, leading to a slow convergence rate. In order to tackle these problems, multiple strategies combining sine cosine operator, opposition-based learning mechanism, and elitism strategy are applied to the original SSA. The sine cosine operator is applied to balance the exploration and exploitation over the course of iteration; the opposition-based learning mechanism is used to enhance the diversity of the swarm; and the elitism strategy is adopted to find global optima. Then, the improved SSA (ISSA) is compared with six well-known meta-heuristic algorithms on 23 classical benchmark functions. The results obtained demonstrate that ISSA outperforms most of the well-known algorithms. Then, ISSA is applied to optimal operation of multiple hydropower reservoirs in the real world. A multiple reservoir system, namely Xiluodu Reservoir and Xiangjiaba Rservoir, in the upper Yangtze River of China are selected as a case study. The results obtained show that the ISSA is able to solve a real-world optimization problem with complex constraints. In addition, for the typical flood with a 100 return period in 1954, the maximum hydropower generation of multiple hydropower reservoirs is about 6671 GWh in the case of completing the flood control task, increasing by 1.18% and 1.77% than SSA and Particle Swarm Optimization (PSO), respectively. Thus, ISSA can be used as an alternative effective and efficient tool for the complex optimization of multiple hydropower reservoirs. The water resources in the river basin can be further utilized by the proposed method to cope with the increasingly serious climate change

    Operation Rule Derivation of Hydropower Reservoirs by Support Vector Machine Based on Grey Relational Analysis

    No full text
    In practical applications, the rational operation rule derivation can lead to significant improvements in the middle and long-term joint operation of cascade hydropower stations. The key issue of actual optimal operation is to select effective attributions from the deterministic optimal operation results, however, there is still no general and mature method to solve this problem. Firstly, the joint optimal operation model of hydropower reservoirs considering backwater effects are established. Then, the dynamic programming and progressive optimality algorithm are applied to solve the joint optimal operation model and the deterministic optimization results are obtained. Finally, the grey relational analysis method is applied to select more effective factors from the obtained results as the input of a support vector machine for further operation rule derivation. The Xi Luo-du and Xiang Jia-ba cascade reservoirs in the upper Yangtze river of China are selected as a case study. The results show that the proposed method can obtain better input factors to improve the performance of SVM, and smallest value of root mean square error by the proposed method of Xi Luo-du and Xiang Jia-ba are 94.33 and 21.32, respectively. The absolute error of hydropower generation for Xi Luo-du and Xiang Jia-ba are 2.57 and 0.42, respectively. Generally, this study provides a well and promising alternative tool to guide the joint operation of hydropower reservoir systems

    Presentation_1_Metabolomics-based investigation of SARS-CoV-2 vaccination (Sinovac) reveals an immune-dependent metabolite biomarker.pdf

    No full text
    SARS-CoV-2 and its mutant strains continue to rapidly spread with high infection and fatality. Large-scale SARS-CoV-2 vaccination provides an important guarantee for effective resistance to existing or mutated SARS-CoV-2 virus infection. However, whether the host metabolite levels respond to SARS-CoV-2 vaccine-influenced host immunity remains unclear. To help delineate the serum metabolome profile of SARS-CoV-2 vaccinated volunteers and determine that the metabolites tightly respond to host immune antibodies and cytokines, in this study, a total of 59 sera samples were collected from 30 individuals before SARS-CoV-2 vaccination and from 29 COVID-19 vaccines 2 weeks after the two-dose vaccination. Next, untargeted metabolomics was performed and a distinct metabolic composition was revealed between the pre-vaccination (VB) group and two-dose vaccination (SV) group by partial least squares-discriminant and principal component analyses. Based on the criteria: FDR 1, we found that L-glutamic acid, gamma-aminobutyric acid (GABA), succinic acid, and taurine showed increasing trends from SV to VB. Furthermore, SV-associated metabolites were mainly annotated to butanoate metabolism and glutamate metabolism pathways. Moreover, two metabolite biomarkers classified SV from VB individuals with an area under the curve (AUC) of 0.96. Correlation analysis identified a positive association between four metabolites enriched in glutamate metabolism and serum antibodies in relation to IgG, IgM, and IgA. These results suggest that the contents of gamma-aminobutyric acid and indole in serum could be applied as biomarkers in distinguishing vaccinated volunteers from the unvaccinated. What’s more, metabolites such as GABA and taurine may serve as a metabolic target for adjuvant vaccines to boost the ability of the individuals to improve immunity.</p

    Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis

    No full text
    Reproductive isolation is a prerequisite for speciation. Failure of communication between female tissues of the pistil and paternal pollen tubes imposes hybridization barriers in flowering plants. Arabidopsis thaliana LURE1 (AtLURE1) peptides and their male receptor PRK6 aid attraction of the growing pollen tube to the ovule. Here, we report that the knockout of the entire AtLURE1 gene family did not affect fertility, indicating that AtLURE1-PRK6-mediated signaling is not required for successful fertilization within one Arabidopsis species. AtLURE1s instead function as pollen tube emergence accelerators that favor conspecific pollen over pollen from other species and thus promote reproductive isolation. We also identified maternal peptides XIUQIU1 to -4, which attract pollen tubes regardless of species. Cooperation between ovule attraction and pollen tube growth acceleration favors conspecific fertilization and promotes reproductive isolation
    corecore