52 research outputs found

    Discharge performance of blended salt in matrix materials for low enthalpy thermochemical storage

    Get PDF
    A novel study is undertaken on low cost thermochemical storage which utilizes temperatures which are compatible with low grade renewable energy capture. The discharge performance of thermochemical storage matrix materials is assessed using a custom developed experimental apparatus which provides a means of comparing materials under scaled reactor conditions. The basic performance of three salts (CaCl2, LiNO3 and MgSO4) was investigated and their subsequent performance using layering and blending techniques established that the performance could be increased by up to 24% through the correct choice of mixing technique. Layering the CaCl2 on the LiNO3 provided the most efficient thermal release strategy and yielded a thermal storage density of 0.2 GJ/m3. The research also uniquely highlights the important finding that incorrect mixing of the materials can lead to a significant reduction in efficiency with freely mixed CaCl2 and LiNO3 possessing a storage capacity of less than 0.01 GJ/m3 as a result of chemical interactions between the deliquesced materials in close proximity. The paper has impact for the design and control of thermochemical storage systems as it clearly identifies how performance can be improved or degraded by the choice and the structuring of the materials

    Stockage de chaleur inter-saisonnier par voie thermochimique pour le chauffage solaire de la maison individuelle

    Get PDF
    The combined efforts promoting an improved insulation and a growth of renewable energies use in buildings play a key role in the road towards greenhouse gas reduction and better energy efficiency. This thesis purpose is to develop a chemicalbased thermal energy storage system devoted to solar space heating of single-family houses. A specific heat storage material has thus been created, made of zeolite and magnesium sulphate. The storage principle, based on a hybrid phenomenon between water vapour physical adsorption and chemical hydration reaction, is seasonal : during the summer, the material stores heat obtained from evacuated tube solar collectors using an endothermic dehydration reaction ; the stored heat is released by rehydration of the material during the winter to produce hot air dedicated to space heating. After a state of the art regarding thermal energy storage technologies, a preparation method is set up. Then, characterization studies of this innovative composite material have been performed, at both micro- and macroscopic scales. Thanks to the macroscopic experimental data, the system size is estimated to meet the space heating energy demand of a low energy single-family house. Afterwards, a thermochemical storage model is developed to understand the coupled heat and mass transfer occurring in the composite sorbent bed, and consequently optimize the reactor design. The model relevancy is finally discussed with respect to experimental results.Les actions conjointes en faveur d’une meilleure isolation du bâti et de l’expansion des énergies renouvelables dans l’habitat jouent un rôle de premier plan dans la politique de réduction des gaz à effet de serre et la recherche d’une plus grande efficacité énergétique. La présente thèse vise à développer un système de stockage de chaleur par voie thermochimique dédié au chauffage solaire d’une maison individuelle. A cet effet, un matériau de stockage spécifique à été mis au point, à base de zéolithe et de sulfate de magnésium. Le principe, reposant sur un phénomène mixte d’adsorption physique de vapeur d’eau et de réaction chimique d’hydratation, est à caractère inter-saisonnier : en été, la chaleur issue de capteurs solaires thermiques à air est stockée par le matériau, qui se déshydrate selon une réaction endothermique ; en hiver, l’exothermicité de la réaction inverse est exploitée afin de chauffer l’habitat. Après un état de l’art des technologies de stockage thermique, un protocole de préparation de ce matériau composite innovant est établi. Des travaux de caractérisation sont alors entrepris à l’échelle micro et macroscopique. A partir de ces données expérimentales macroscopiques, le système de stockage est dimensionné en fonction des besoins en chaleur pour le chauffage d’une maison individuelle de type Bâtiment Basse Consommation. A l’issue de cette étude, un modèle de réacteur de stockage thermique est élaboré, afin d’interpréter les transferts couplés de matière et de chaleur intervenant dans le lit de matériau et d’optimiser le réacteur de stockage en conséquence. La validité du modèle est ensuite testée et discutée à la lumière des résultats expérimentaux

    Inter-seasonal thermal energy storage based on a thermochemical process for solar space heating of single-family houses

    No full text
    Les actions conjointes en faveur d’une meilleure isolation du bâti et de l’expansion des énergies renouvelables dans l’habitat jouent un rôle de premier plan dans la politique de réduction des gaz à effet de serre et la recherche d’une plus grande efficacité énergétique. La présente thèse vise à développer un système de stockage de chaleur par voie thermochimique dédié au chauffage solaire d’une maison individuelle. A cet effet, un matériau de stockage spécifique à été mis au point, à base de zéolithe et de sulfate de magnésium. Le principe, reposant sur un phénomène mixte d’adsorption physique de vapeur d’eau et de réaction chimique d’hydratation, est à caractère inter-saisonnier : en été, la chaleur issue de capteurs solaires thermiques à air est stockée par le matériau, qui se déshydrate selon une réaction endothermique ; en hiver, l’exothermicité de la réaction inverse est exploitée afin de chauffer l’habitat. Après un état de l’art des technologies de stockage thermique, un protocole de préparation de ce matériau composite innovant est établi. Des travaux de caractérisation sont alors entrepris à l’échelle micro et macroscopique. A partir de ces données expérimentales macroscopiques, le système de stockage est dimensionné en fonction des besoins en chaleur pour le chauffage d’une maison individuelle de type Bâtiment Basse Consommation. A l’issue de cette étude, un modèle de réacteur de stockage thermique est élaboré, afin d’interpréter les transferts couplés de matière et de chaleur intervenant dans le lit de matériau et d’optimiser le réacteur de stockage en conséquence. La validité du modèle est ensuite testée et discutée à la lumière des résultats expérimentaux.The combined efforts promoting an improved insulation and a growth of renewable energies use in buildings play a key role in the road towards greenhouse gas reduction and better energy efficiency. This thesis purpose is to develop a chemicalbased thermal energy storage system devoted to solar space heating of single-family houses. A specific heat storage material has thus been created, made of zeolite and magnesium sulphate. The storage principle, based on a hybrid phenomenon between water vapour physical adsorption and chemical hydration reaction, is seasonal : during the summer, the material stores heat obtained from evacuated tube solar collectors using an endothermic dehydration reaction ; the stored heat is released by rehydration of the material during the winter to produce hot air dedicated to space heating. After a state of the art regarding thermal energy storage technologies, a preparation method is set up. Then, characterization studies of this innovative composite material have been performed, at both micro- and macroscopic scales. Thanks to the macroscopic experimental data, the system size is estimated to meet the space heating energy demand of a low energy single-family house. Afterwards, a thermochemical storage model is developed to understand the coupled heat and mass transfer occurring in the composite sorbent bed, and consequently optimize the reactor design. The model relevancy is finally discussed with respect to experimental results

    Stockage de chaleur inter-saisonnier par voie thermochimique pour le chauffage solaire de la maison individuelle

    No full text
    Les actions conjointes en faveur d une meilleure isolation du bâti et de l expansion des énergies renouvelables dans l habitat jouent un rôle de premier plan dans la politique de réduction des gaz à effet de serre et la recherche d une plus grande efficacité énergétique. La présente thèse vise à développer un système de stockage de chaleur par voie thermochimique dédié au chauffage solaire d une maison individuelle. A cet effet, un matériau de stockage spécifique à été mis au point, à base de zéolithe et de sulfate de magnésium. Le principe, reposant sur un phénomène mixte d adsorption physique de vapeur d eau et de réaction chimique d hydratation, est à caractère inter-saisonnier : en été, la chaleur issue de capteurs solaires thermiques à air est stockée par le matériau, qui se déshydrate selon une réaction endothermique ; en hiver, l exothermicité de la réaction inverse est exploitée afin de chauffer l habitat. Après un état de l art des technologies de stockage thermique, un protocole de préparation de ce matériau composite innovant est établi. Des travaux de caractérisation sont alors entrepris à l échelle micro et macroscopique. A partir de ces données expérimentales macroscopiques, le système de stockage est dimensionné en fonction des besoins en chaleur pour le chauffage d une maison individuelle de type Bâtiment Basse Consommation. A l issue de cette étude, un modèle de réacteur de stockage thermique est élaboré, afin d interpréter les transferts couplés de matière et de chaleur intervenant dans le lit de matériau et d optimiser le réacteur de stockage en conséquence. La validité du modèle est ensuite testée et discutée à la lumière des résultats expérimentaux.The combined efforts promoting an improved insulation and a growth of renewable energies use in buildings play a key role in the road towards greenhouse gas reduction and better energy efficiency. This thesis purpose is to develop a chemicalbased thermal energy storage system devoted to solar space heating of single-family houses. A specific heat storage material has thus been created, made of zeolite and magnesium sulphate. The storage principle, based on a hybrid phenomenon between water vapour physical adsorption and chemical hydration reaction, is seasonal : during the summer, the material stores heat obtained from evacuated tube solar collectors using an endothermic dehydration reaction ; the stored heat is released by rehydration of the material during the winter to produce hot air dedicated to space heating. After a state of the art regarding thermal energy storage technologies, a preparation method is set up. Then, characterization studies of this innovative composite material have been performed, at both micro- and macroscopic scales. Thanks to the macroscopic experimental data, the system size is estimated to meet the space heating energy demand of a low energy single-family house. Afterwards, a thermochemical storage model is developed to understand the coupled heat and mass transfer occurring in the composite sorbent bed, and consequently optimize the reactor design. The model relevancy is finally discussed with respect to experimental results.VILLEURBANNE-DOC'INSA LYON (692662301) / SudocVILLEURBANNE-DOC'INSA-Bib. elec. (692669901) / SudocSudocFranceF
    • …
    corecore