220 research outputs found

    Toward the Discovery of Small Molecules that Target Adenosine 5'- Phosphosulfate Reductase.

    Full text link
    Adenosine-5’-phosphosulfate reductase (APR) is an iron-sulfur protein that catalyzes the first committed step in the de novo biosynthesis of cysteine in mycobacteria. APR is a validated target for the development of new antitubercular agents, particularly for the treatment of latent infection. The goal of this research is to develop small-molecule inhibitors of APR that serve as tools for biological discovery or as leads for drug discovery. Toward this end, we have combined virtual ligand screening (VLS), rational structure-based design, and enzyme mechanism analysis. Through VLS and experimental testing, we have identified the first nonphosphate-based inhibitors of APR and discovered an additional ligand-binding site, which could be exploited for the design of bifunctional small-molecules. To facilitate the development of potent and specific inhibitors of APR, we have also probed the molecular determinants that underlie binding and specificity via a series of substrate and product analogs. Our findings reveal a critical role for the α-phosphate group and provide evidence for ligand-specific conformational states within the C-terminal domain. In addition, we demonstrate that a conserved histidine within the flexible segment plays an essential role in substrate binding and in closure of the active site lid. Subsequently, a structure-based approach was utilized in the design and synthesis of an irreversible cysteine-targeted inhibitor of APR, which locks the enzyme in its closed, inactive state. Finally, we have investigated the function of the iron-sulfur cluster in APR and provide kinetic evidence that the cofactor plays an essential role in substrate specificity of sulfonucleotide reductases. Collectively, these data further our understanding of the APR reaction mechanism and pave the way for development of new inhibitors to target this therapeutically important class of enzymes.Ph.D.ChemistryUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91525/1/jannieh_1.pd

    ICBEN review of research on the biological effects of noise 2011-2014

    Get PDF
    The mandate of the International Commission on Biological Effects of Noise (ICBEN) is to promote a high level of scientific research concerning all aspects of noise-induced effects on human beings and animals. In this review, ICBEN team chairs and co-chairs summarize relevant findings, publications, developments, and policies related to the biological effects of noise, with a focus on the period 2011-2014 and for the following topics: Noise-induced hearing loss; nonauditory effects of noise; effects of noise on performance and behavior; effects of noise on sleep; community response to noise; and interactions with other agents and contextual factors. Occupational settings and transport have been identified as the most prominent sources of noise that affect health. These reviews demonstrate that noise is a prevalent and often underestimated threat for both auditory and nonauditory health and that strategies for the prevention of noise and its associated negative health consequences are needed to promote public health

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Recent discoveries and applications involving small-molecule microarrays

    No full text
    High-throughput and unbiased binding assays have proven useful in probe discovery for a myriad of biomolecules, including targets of unknown structure or function and historically challenging target classes. Over the past decade, a number of novel formats for executing large-scale binding assays have been developed and used successfully in probe discovery campaigns. Here we review the use of one such format, the small-molecule microarray (SMM), as a tool for discovering protein-small molecule interactions. This review will briefly highlight selected recent probe discoveries using SMMs as well as novel uses of SMMs in profiling applications. © 2013 Elsevier Ltd

    Iron–Sulfur Cluster Engineering Provides Insight into the Evolution of Substrate Specificity among Sulfonucleotide Reductases

    No full text
    Assimilatory sulfate reduction supplies prototrophic organisms with reduced sulfur that is required for the biosynthesis of all sulfur-containing metabolites, including cysteine and methionine. The reduction of sulfate requires its activation <i>via</i> an ATP-dependent activation to form adenosine-5′-phosphosulfate (APS). Depending on the species, APS can be reduced directly to sulfite by APS reductase (APR) or undergo a second phosphorylation to yield 3′-phosphoadenosine-5′-phosphosulfate (PAPS), the substrate for PAPS reductase (PAPR). These essential enzymes have no human homologue, rendering them attractive targets for the development of novel antibacterial drugs. APR and PAPR share sequence and structure homology as well as a common catalytic mechanism, but the enzymes are distinguished by two features, namely, the amino acid sequence of the phosphate-binding loop (P-loop) and an iron–sulfur cofactor in APRs. On the basis of the crystal structures of APR and PAPR, two P-loop residues are proposed to determine substrate specificity; however, this hypothesis has not been tested. In contrast to this prevailing view, we report here that the P-loop motif has a modest effect on substrate discrimination. Instead, by means of metalloprotein engineering, spectroscopic, and kinetic analyses, we demonstrate that the iron–sulfur cluster cofactor enhances APS reduction by nearly 1000-fold, thereby playing a pivotal role in substrate specificity and catalysis. These findings offer new insights into the evolution of this enzyme family and extend the known functions of protein-bound iron–sulfur clusters

    ICBEN review of research on the biological effects of noise 2011-2014

    Get PDF
    The mandate of the International Commission on Biological Effects of Noise (ICBEN) is to promote a high level of scientific research concerning all aspects of noise-induced effects on human beings and animals. In this review, ICBEN team chairs and co-chairs summarize relevant findings, publications, developments, and policies related to the biological effects of noise, with a focus on the period 2011-2014 and for the following topics: Noise-induced hearing loss; nonauditory effects of noise; effects of noise on performance and behavior; effects of noise on sleep; community response to noise; and interactions with other agents and contextual factors. Occupational settings and transport have been identified as the most prominent sources of noise that affect health. These reviews demonstrate that noise is a prevalent and often underestimated threat for both auditory and nonauditory health and that strategies for the prevention of noise and its associated negative health consequences are needed to promote public health
    corecore