49 research outputs found

    Opportunistic, human-pathogenic species in the Herpotrichiellaceae are phenotypically similar to saprobic or phytopathogenic species in the Venturiaceae

    Get PDF
    Although morphologically similar, species of Cladophialophora (Herpotrichiellaceae) were shown to be phylogenetically distinct from Pseudocladosporium (Venturiaceae), which was revealed to be synonymous with the older genus, Fusicladium. Other than being associated with human disorders, species of Cladophialophora were found to also be phytopathogenic, or to occur as saprobes on organic material, or in water, fruit juices, or sports drinks, along with species of Exophiala. Caproventuria and Metacoleroa were confirmed to be synonyms of Venturia, which has Fusicladium (= Pseudocladosporium) anamorphs. Apiosporina, based on A. collinsii, clustered basal to the Venturia clade, and appears to represent a further synonym. Several species with a pseudocladosporium-like morphology in vitro represent a sister clade to the Venturia clade, and are unrelated to Polyscytalum. These taxa are newly described in Fusicladium, which is morphologically close to Anungitea, a heterogeneous genus with unknown phylogenetic affinity. In contrast to the Herpotrichiellaceae, which were shown to produce numerous synanamorphs in culture, species of the Venturiaceae were morphologically and phylogenetically more uniform. Several new species and new combinations were introduced in Cladophialophora, Cyphellophora (Herpotrichiellaceae), Exophiala, Fusicladium, Venturia (Venturiaceae), and Cylindrosympodium (incertae sedis)

    In situ scanning tunneling microscopy of electrochemical oxidation of single crystal Au(100) surface in aqueous solution

    No full text
    In situ electrochemical scanning tunneling microscopy (ESTM) was applied to gold surfaces (Au(100)) in an aqueous perchloric acid solution. Images observed on fully oxidized surfaces seemed to be similar to those in the double layer region. This indicated that oxide layers such as AuOH and AuO were uniformly formed on the surface. New islands of a height of ca. 0.15 nm were observed on partially oxidized surfaces, suggesting that the AuOH layer was formed by an island-growth mechanism. Pits and islands of monatomic height were simultaneously created by rather mild oxidation-reduction cycles. The surface diffusion of Au was also investigated

    Immunosuppression With FTY720 Reverses Cardiac Dysfunction in Hypomorphic ApoE Mice Deficient in SR-BI Expression That Survive Myocardial Infarction Caused by Coronary Atherosclerosis

    No full text
    AIMS:We recently reported that immunosuppression with FTY720 improves cardiac function and extends longevity in Hypomorphic ApoE mice deficient in scavenger receptor Type-BI expression, also known as the HypoE/SR-BI(–/–) mouse model of diet-induced coronary atherosclerosis and myocardial infarction (MI). In this study, we tested the impact of FTY720 on cardiac dysfunction in HypoE/SR-BI(–/–) mice that survive MI and subsequently develop chronic heart failure. METHODS/RESULTS:HypoE/SR-BI(–/–) mice were bred to Mx1-Cre transgenic mice, and offspring were fed a high-fat diet (HFD) for 3.5 weeks to provoke hyperlipidemia, coronary atherosclerosis, and recurrent MIs. In contrast to our previous study, hyperlipidemia was rapidly reversed by inducible Cre-mediated gene repair of the HypoE allele and switching mice to a normal chow diet. Mice that survived the period of HFD were subsequently given oral FTY720 in drinking water or not, and left ventricular (LV) function was monitored using serial echocardiography for up to 15 weeks. In untreated mice, LV performance progressively deteriorated. Although FTY720 treatment did not initially prevent a decline of heart function among mice 6 weeks after Cre-mediated gene repair, it almost completely restored normal LV function in these mice by 15 weeks. Reversal of heart failure did not result from reduced atherosclerosis as the burden of aortic and coronary atherosclerosis actually increased to similar levels in both groups of mice. Rather, FTY720 caused systemic immunosuppression as assessed by reduced numbers of circulating T and B lymphocytes. In contrast, FTY720 did not enhance the loss of T cells or macrophages that accumulated in the heart during the HFD feeding period, but it did enhance the loss of B cells soon after plasma lipid lowering. Moreover, FTY720 potently reduced the expression of matrix metalloproteinase-2 and genes involved in innate immunity-associated inflammation in the heart. CONCLUSIONS:Our data demonstrate that immunosuppression with FTY720 prevents postinfarction myocardial remodeling and chronic heart failure

    Structure of Au(111) and Au(100) Single-Crystal Electrode Surfaces at Various Potentials in Sulfuric Acid Solution Determined by In Situ Surface X-ray Scattering

    Get PDF
    Potential-dependent surface structures of Au(111) and Au(100) single-crystal electrodes in a 50 mM H2SO4 solution were investigated at an atomic level using in situ surface X-ray scattering (SXS) techniques. It was confirmed that both the Au(111) and Au(100) surfaces were reconstructed with an attached submonolayer of an oxygen species, most probably water, at 0 V (vs Ag/AgCl). Results at +0.95 V supported a previously suggested model for both the Au(111) and the Au(100) electrodes that, based on infrared and scanning tunneling microscopy measurements, the surfaces were a (1 x 1) structure with the coadsorbed sulfate anion and hydronium cation (H3O+). At +1.05 V, where a small amount of an anodic current flowed, adsorption of a monolayer of oxygen species was observed on both surfaces. When the single-crystal gold electrodes were electrochemically oxidized at +1.40 V, the expansion of the gold surface by about one monolayer of Au atoms was observed, suggesting the penetration of oxygen into the surface gold layers (i.e., the formation of two layers of surface oxide). When the surface oxide was reduced at +0.65 V, the surface structure returned back to the structure observed at +0.95 V before the oxide formation (i.e., a (1 x 1) structure with coadsorbed sulfate anion and H3O+). When the potential was reduced to 0 V, the surfaces were reconstructed again but with slightly more random structures than those before the potential cycle
    corecore