75 research outputs found

    Hierarchical Modeling of Activation Mechanisms in the ABL and EGFR Kinase Domains: Thermodynamic and Mechanistic Catalysts of Kinase Activation by Cancer Mutations

    Get PDF
    Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced stabilization of the active kinase form. The results of this study reconcile current experimental data with insights from theoretical approaches, pointing to general mechanistic aspects of activating transitions in protein kinases

    Structure and Dynamics of Amyloid-β Segmental Polymorphisms

    Get PDF
    Conceived and designed the experiments: WB UH. Performed the experiments: WB. Analyzed the data: WB UH. Contributed reagents/materials/analysis tools: WB UH. Wrote the paper: WB UH.It is believed that amyloid-beta (Aβ) aggregates play a role in the pathogenesis of Alzheimer’s disease. Aβ molecules form β-sheet structures with multiple interaction sites. This polymorphism gives rise to differences in morphology, physico-chemical property and level of cellular toxicity. We have investigated the conformational stability of various segmental polymorphisms using molecular dynamics simulations and find that the segmental polymorphic models of Aβ retain a U-shaped architecture. Our results demonstrate the importance of inter-sheet side chain-side chain contacts, hydrophobic contacts among the strands (β1 and β2) and of salt bridges in stabilizing the aggregates. Residues in β-sheet regions have smaller fluctuation while those at the edge and loop region are more mobile. The inter-peptide salt bridges between Asp23 and Lys28 are strong compared to intra-chain salt bridge and there is an exchange of the inter-chain salt-bridge with intra-chain salt bridge. As our results suggest that Aβ exists under physiological conditions as an ensemble of distinct segmental polymorphs, it may be necessary to account in the development of therapeutics for Alzheimer’s disease the differences in structural stability and aggregation behavior of the various Aβ polymorphic forms.Yeshttp://www.plosone.org/static/editorial#pee

    Modulation of hepatic perfusion did not improve recovery from hepatic outflow obstruction

    No full text
    Background Focal hepatic venous outflow obstruction frequently occurs after extended liver resection and leads to a portal hypertension, arterial hypoperfusion and parenchymal necrosis. In this study, we investigated the pharmacological modulation of liver perfusion and hepatic damage in a surgical model of hepatic outflow obstruction after extended liver resection by administration of 5 different drugs in comparison to an operative intervention, splenectomy. Methods Male inbred Lewis rats (Lew/Crl) were subjected to right median hepatic vein ligation + 70% partial hepatectomy. Treatment consisted of a splenectomy or the application of saline, carvedilol or isosorbide-5-mononitrate (ISMN) (5 mg · kg−1 respectively 7,2 mg · kg−1 per gavage 12 h−1). The splenectomy was performed during operation. The effect of the treatments on hepatic hemodynamics were measured in non-operated animals, immediately after operation (n = 4/group) and 24 h after operation (n = 5/group). Assessment of hepatic damage (liver enzymes, histology) and liver cell proliferation (BrdU-immunohistochemistry) was performed 24 h after operation. Furthermore sildenafil (10 μg · kg−1 i.p. 12h−1), terlipressin (0.05 mg · kg−1 i.v. 12 h−1) and octreotide (10 μg · kg−1 s.c. 12 h−1) were investigated regarding their effect on hepatic hemodynamics and hepatic damage 24 h after operation (n = 4/group). Results Carvedilol and ISMN significantly decreased the portal pressure in normal non-operated rats from 11,1 ± 1,1 mmHg (normal rats) to 8,4 ± 0,3 mmHg (carvedilol) respectively 7,4 ± 1,8 mmHg (ISMN). ISMN substantially reduced surgery-induced portal hypertension from 15,4 ± 4,4 mmHg to 9,6 ± 2,3 mmHg. Only splenectomy reduced the portal flow immediately after operation by approximately 25%. No treatment had an immediate effect on the hepatic arterial perfusion. In all treatment groups, portal flow increased by approximately 3-fold within 24 h after operation, whereas hepatic arterial flow decreased substantially. Neither treatment reduced hepatic damage as assessed 24 h after operation. The distribution of proliferating cells appeared very similar in all drug treated groups and the splenectomy group. Conclusion Transient relative reduction of portal pressure did not result in a reduction of hepatic damage. This might be explained by the development of portal hyperperfusion which was accompanied by arterial hypoperfusion

    Practical quantification of necrosis in histological whole-slide images

    No full text
    Since the histological quantification of necrosis is a common task in medical research and practice, we evaluate different image analysis methods for quantifying necrosis in whole-slide images. In a practical usage scenario, we assess the impact of different classification algorithms and feature sets on both accuracy and computation time. We show how a well-chosen combination of multiresolution features and an efficient postprocessing step enables the accurate quantification necrosis in gigapixel images in less than a minute. The results are general enough to be applied to other areas of histological image analysis as well

    Evaporation residue cross sections from the fusion 52^{52}Cr + 110^{110}Pd

    No full text
    • …
    corecore