892 research outputs found

    MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. VI. Kinematics Analysis of a Complete Sample of Blazar Jets

    Get PDF
    We discuss the jet kinematics of a complete flux-density-limited sample of 135 radio-loud active galactic nuclei (AGN) resulting from a 13 year program to investigate the structure and evolution of parsec-scale jet phenomena. Our analysis is based on new 2 cm Very Long Baseline Array (VLBA) images obtained between 2002 and 2007, but includes our previously published observations made at the same wavelength, and is supplemented by VLBA archive data. In all, we have used 2424 images spanning the years 1994-2007 to study and determine the motions of 526 separate jet features in 127 jets. The data quality and temporal coverage (a median of 15 epochs per source) of this complete AGN jet sample represents a significant advance over previous kinematics surveys. In all but five AGNs, the jets appear one-sided, most likely the result of differential Doppler boosting. In general the observed motions are directed along the jet ridge line, outward from the optically thick core feature. We directly observe changes in speed and/or direction in one third of the well-sampled jet components in our survey. While there is some spread in the apparent speeds of separate features within an individual jet, the dispersion is about three times smaller than the overall dispersion of speeds among all jets. This supports the idea that there is a characteristic flow that describes each jet, which we have characterized by the fastest observed component speed. The observed maximum speed distribution is peaked at ~10c, with a tail that extends out to ~50c. This requires a distribution of intrinsic Lorentz factors in the parent population that range up to ~50. We also note the presence of some rare low-pattern speeds or even stationary features in otherwise rapidly flowing jets... (abridged)Comment: 19 pages, 10 figures, 2 tables, accepted by the Astronomical Journal; online only material is available from http://www.cv.nrao.edu/2cmVLBA/pub/MOJAVE_VI_suppl.zi

    MOJAVE: Monitoring of Jets in AGN with VLBA Experiments. VII. Blazar Jet Acceleration

    Full text link
    We discuss acceleration measurements for a large sample of extragalactic radio jets from the MOJAVE program which studies the parsec-scale jet structure and kinematics of a complete, flux-density-limited sample of Active Galactic Nuclei (AGN). Accelerations are measured from the apparent motion of individual jet features or "components" which may represent patterns in the jet flow. We find that significant accelerations are common both parallel and perpendicular to the observed component velocities. Parallel accelerations, representing changes in apparent speed, are generally larger than perpendicular acceleration that represent changes in apparent direction. The trend for larger parallel accelerations indicates that a significant fraction of these changes in apparent speed are due to changes in intrinsic speed of the component rather than changes in direction to the line of sight. We find an overall tendency for components with increasing apparent speed to be closer to the base of their jets than components with decreasing apparent speed. This suggests a link between the observed pattern motions and the underlying flow which, in some cases, may increase in speed close to the base and decrease in speed further out; however, common hydro-dynamical processes for propagating shocks may also play a role. About half of the components show "non-radial" motion, or a misalignment between the component's structural position angle and its velocity direction, and these misalignments generally better align the component motion with the downstream emission. Perpendicular accelerations are closely linked with non-radial motion. When observed together, perpendicular accelerations are usually in the correct direction to have caused the observed misalignment.Comment: 17 pages, 11 figures, 1 table, accepted by the Astrophysical Journa

    Multifrequency VLBA Monitoring of 3C 273 during the INTEGRAL Campaign in 2003 - I. Kinematics of the Parsec Scale Jet from 43 GHz Data

    Full text link
    In this first of a series of papers describing polarimetric multifrequency Very Long Baseline Array (VLBA) monitoring of 3C 273 during a simultaneous campaign with the INTEGRAL gamma-ray satellite in 2003, we present 5 Stokes I images and source models at 7 mm. We show that a part of the inner jet (1-2 milliarcseconds from the core) is resolved in a direction transverse to the flow, and we analyse the kinematics of the jet within the first 10 mas. Based on the VLBA data and simultaneous single-dish flux density monitoring, we determine an accurate value for the Doppler factor of the parsec scale jet, and using this value with observed proper motions, we calculate the Lorentz factors and the viewing angles for the emission components in the jet. Our data indicates a significant velocity gradient across the jet with the components travelling near the southern edge being faster than the components with more northern path. We discuss our observations in the light of jet precession model and growing plasma instabilities.Comment: Accepted for publication in Astronomy & Astrophysics, 16 pages, 15 figure

    Direct Distance Measurements to Superluminal Radio Sources

    Get PDF
    We present a new technique for directly measuring the distances to superluminal radio sources. By comparing the observed proper motions of components in a parsec scale radio jet to their measured Doppler factors, we can deduce the distance to the radio source independent of the standard rungs in the cosmological distance ladder. This technique requires that the jet angle to the line of sight and the ratio of pattern to flow velocities are sufficiently constrained. We evaluate a number of possibilities for constraining these parameters and demonstrate the technique on a well defined component in the parsec scale jet of the quasar 3C279 (z = 0.536). We find an angular size distance to 3C279 of greater than 1.8 (+0.5,-0.3) n^{1/8} Gpc, where n is the ratio of the energy density in the magnetic field to the energy density in the radiating particles in that jet component. For an Einstein-de Sitter Universe, this measurement would constrain the Hubble constant to be H < 65 n^{-1/8} km/s/Mpc at the two sigma level. Similar measurements on higher redshift sources may help discriminate between cosmological models.Comment: 18 pages, 8 figures, to be published in The Astrophysical Journa

    Cell Shape Dynamics: From Waves to Migration

    Get PDF
    We observe and quantify wave-like characteristics of amoeboid migration. Using the amoeba Dictyostelium discoideum, a model system for the study of chemotaxis, we demonstrate that cell shape changes in a wave-like manner. Cells have regions of high boundary curvature that propagate from the leading edge toward the back, usually along alternating sides of the cell. Curvature waves are easily seen in cells that do not adhere to a surface, such as cells that are electrostatically repelled from surfaces or cells that extend over the edge of micro-fabricated cliffs. Without surface contact, curvature waves travel from the leading edge to the back of a cell at ∌35 ”m/min. Non-adherent myosin II null cells do not exhibit these curvature waves. At the leading edge of adherent cells, curvature waves are associated with protrusive activity. Like regions of high curvature, protrusive activity travels along the boundary in a wave-like manner. Upon contact with a surface, the protrusions stop moving relative to the surface, and the boundary shape thus reflects the history of protrusive motion. The wave-like character of protrusions provides a plausible mechanism for the zig-zagging of pseudopods and for the ability of cells both to swim in viscous fluids and to navigate complex three dimensional topography

    Chandra and Swift observations of the quasi-persistent neutron star transient EXO 0748-676 back to quiescence

    Full text link
    The quasi-persistent neutron star X-ray transient and eclipsing binary EXO 0748-676 recently started the transition to quiescence following an accretion outburst that lasted more than 24 years. We report on two Chandra and twelve Swift observations performed within five months after the end of the outburst. The Chandra spectrum is composed of a soft, thermal component that fits to a neutron star atmosphere model with kT^inf~0.12 keV, joined by a hard powerlaw tail that contributes ~20% of the total 0.5-10 keV unabsorbed flux. The combined Chandra/Swift data set reveals a relatively hot and luminous quiescent system with a temperature of kT^inf~0.11-0.13 keV and a bolometric thermal luminosity of ~8.1E33-1.6E34 (d/7.4 kpc)^2 erg/s. We discuss our results in the context of cooling neutron star models.Comment: Accepted for publication in MNRAS Letters, moderate revision according to referee report, added one plot to figure 2 and included new Swift observations, 5 pages, 2 figure

    In silico druggability assessment of the NUDIX hydrolase protein family as a workflow for target prioritization

    Get PDF
    Computational chemistry has now been widely accepted as a useful tool for shortening lead times in early drug discovery. When selecting new potential drug targets, it is important to assess the likelihood of finding suitable starting points for lead generation before pursuing costly high-throughput screening campaigns. By exploiting available high-resolution crystal structures, an in silico druggability assessment can facilitate the decision of whether, and in cases where several protein family members exist, which of these to pursue experimentally. Many of the algorithms and software suites commonly applied for in silico druggability assessment are complex, technically challenging and not always user-friendly. Here we applied the intuitive open access servers of DoGSite, FTMap and CryptoSite to comprehensively predict ligand binding pockets, druggability scores and conformationally active regions of the NUDIX protein family. In parallel we analyzed potential ligand binding sites, their druggability and pocket parameter using Schrödinger's SiteMap. Then an in silico docking cascade of a subset of the ZINC FragNow library using the Glide docking program was performed to assess identified pockets for large-scale small-molecule binding. Subsequently, this initial dual ranking of druggable sites within the NUDIX protein family was benchmarked against experimental hit rates obtained both in-house and by others from traditional biochemical and fragment screening campaigns. The observed correlation suggests that the presented user-friendly workflow of a dual parallel in silico druggability assessment is applicable as a standalone method for decision on target prioritization and exclusion in future screening campaigns

    Possible Detection of Apparent Superluminal inward motion in Markarian 421 after the Giant X-ray flare in February, 2010

    Full text link
    We report on the VLBI follow-up observations using the Japanese VLBI Network (JVN) array at 22 GHz for the largest X-ray flare of TeV blazar Mrk 421 that occurred in mid-February, 2010. The total of five epochs of observations were performed at intervals of about 20 days between March 7 and May 31, 2010. No new-born component associated with the flare was seen directly in the total intensity images obtained by our multi-epoch VLBI observations. However, one jet component located at ~1 mas north-west from the core was able to be identified, and its proper motion can be measured as -1.66+/-0.46 mas yr^-1, which corresponds to an apparent velocity of -3.48+/-0.97 c. Here, this negative velocity indicates that the jet component was apparently moving toward the core. As the most plausible explanation, we discuss that the apparent negative velocity was possibly caused by the ejection of a new component, which could not be resolved with our observations. In this case, the obtained Doppler factor of the new component is around 10 to 20, which is consistent with the ones typically estimated by model fittings of spectral energy distribution for this source.Comment: 9 pages, 6 figures, 3 tables, accepted for publication in Ap
    • 

    corecore