253 research outputs found

    Entanglement spectrum and boundary theories with projected entangled-pair states

    Get PDF
    In many physical scenarios, close relations between the bulk properties of quantum systems and theories associated to their boundaries have been observed. In this work, we provide an exact duality mapping between the bulk of a quantum spin system and its boundary using Projected Entangled Pair States (PEPS). This duality associates to every region a Hamiltonian on its boundary, in such a way that the entanglement spectrum of the bulk corresponds to the excitation spectrum of the boundary Hamiltonian. We study various specific models, like a deformed AKLT [1], an Ising-type [2], and Kitaev's toric code [3], both in finite ladders and infinite square lattices. In the latter case, some of those models display quantum phase transitions. We find that a gapped bulk phase with local order corresponds to a boundary Hamiltonian with local interactions, whereas critical behavior in the bulk is reflected on a diverging interaction length of the boundary Hamiltonian. Furthermore, topologically ordered states yield non-local Hamiltonians. As our duality also associates a boundary operator to any operator in the bulk, it in fact provides a full holographic framework for the study of quantum many-body systems via their boundary.Comment: 13 pages, 14 figure

    Thermodynamics and area in Minkowski space: Heat capacity of entanglement

    Full text link
    Tracing over the degrees of freedom inside (or outside) a sub-volume V of Minkowski space in a given quantum state |psi>, results in a statistical ensemble described by a density matrix rho. This enables one to relate quantum fluctuations in V when in the state |psi>, to statistical fluctuations in the ensemble described by rho. These fluctuations scale linearly with the surface area of V. If V is half of space, then rho is the density matrix of a canonical ensemble in Rindler space. This enables us to `derive' area scaling of thermodynamic quantities in Rindler space from area scaling of quantum fluctuations in half of Minkowski space. When considering shapes other than half of Minkowski space, even though area scaling persists, rho does not have an interpretation as a density matrix of a canonical ensemble in a curved, or geometrically non-trivial, background.Comment: 17 page

    Entanglement in Quantum Spin Chains, Symmetry Classes of Random Matrices, and Conformal Field Theory

    Full text link
    We compute the entropy of entanglement between the first NN spins and the rest of the system in the ground states of a general class of quantum spin-chains. We show that under certain conditions the entropy can be expressed in terms of averages over ensembles of random matrices. These averages can be evaluated, allowing us to prove that at critical points the entropy grows like κlog2N+κ~\kappa\log_2 N + {\tilde \kappa} as NN\to\infty, where κ\kappa and κ~{\tilde \kappa} are determined explicitly. In an important class of systems, κ\kappa is equal to one-third of the central charge of an associated Virasoro algebra. Our expression for κ\kappa therefore provides an explicit formula for the central charge.Comment: 4 page

    Effective Gravitational Field of Black Holes

    Get PDF
    The problem of interpretation of the \hbar^0-order part of radiative corrections to the effective gravitational field is considered. It is shown that variations of the Feynman parameter in gauge conditions fixing the general covariance are equivalent to spacetime diffeomorphisms. This result is proved for arbitrary gauge conditions at the one-loop order. It implies that the gravitational radiative corrections of the order \hbar^0 to the spacetime metric can be physically interpreted in a purely classical manner. As an example, the effective gravitational field of a black hole is calculated in the first post-Newtonian approximation, and the secular precession of a test particle orbit in this field is determined.Comment: 8 pages, LaTeX, 1 eps figure. Proof of the theorem and typos correcte

    Universality of Entropy Scaling in 1D Gap-less Models

    Full text link
    We consider critical models in one dimension. We study the ground state in thermodynamic limit [infinite lattice]. Following Bennett, Bernstein, Popescu, and Schumacher, we use the entropy of a sub-system as a measure of entanglement. We calculate the entropy of a part of the ground state. At zero temperature it describes entanglement of this part with the rest of the ground state. We obtain an explicit formula for the entropy of the subsystem at low temperature. At zero temperature we reproduce a logarithmic formula of Holzhey, Larsen and Wilczek. Our derivation is based on the second law of thermodynamics. The entropy of a subsystem is calculated explicitly for Bose gas with delta interaction, the Hubbard model and spin chains with arbitrary value of spin.Comment: A section on spin chains with arbitrary value of spin is included. The entropy of a subsystem is calculated explicitly as a function of spin. References update

    Emission rates, the Correspondence Principle and the Information Paradox

    Get PDF
    When we vary the moduli of a compactification it may become entropically favourable at some point for a state of branes and strings to rearrange itself into a new configuration. We observe that for the elementary string with two large charges such a rearrangement happens at the `correspondence point' where the string becomes a black hole. For smaller couplings it is entropically favourable for the excitations to be vibrations of the string, while for larger couplings the favoured excitations are pairs of solitonic 5-branes attached to the string; this helps resolve some recently noted difficulties with matching emission properties of the string to emission properties of the black hole. We also examine the change of state when a black hole is placed in a spacetime with an additional compact direction, and the size of this direction is varied. These studies suggest a mechanism that might help resolve the information paradox.Comment: harvmac, 28 page

    Dilaton Black Holes with Electric Charge

    Get PDF
    Static spherically symmetric solutions of the Einstein-Maxwell gravity with the dilaton field are described. The solutions correspond to black holes and are generalizations of the previously known dilaton black hole solution. In addition to mass and electric charge these solutions are labeled by a new parameter, the dilaton charge of the black hole. Different effects of the dilaton charge on the geometry of space-time of such black holes are studied. It is shown that in most cases the scalar curvature is divergent at the horizons. Another feature of the dilaton black hole is that there is a finite interval of values of electric charge for which no black hole can exist.Comment: 20 pages, LaTeX file + 1 figure, CALT-68-1885. (the postscript file is improved

    Entropy for dilatonic black hole

    Full text link
    The area formula for entropy is extended to the case of a dilatonic black hole. The entropy of a scalar field in the background of such a black hole is calculated semiclassically. The area and cutoff dependences are normal {\it except in the extremal case}, where the area is zero but the entropy nonzero.Comment: 13 pages (Applicability of area formula justified and a reference added

    Entropy, holography and the second law

    Full text link
    The geometric entropy in quantum field theory is not a Lorentz scalar and has no invariant meaning, while the black hole entropy is invariant. Renormalization of entropy and energy for reduced density matrices may lead to the negative free energy even if no boundary conditions are imposed. Presence of particles outside the horizon of a uniformly accelerated observer prevents the description in terms of a single Unruh temperature.Comment: 4 pages, RevTex 4, 1 eps figur
    corecore