The problem of interpretation of the \hbar^0-order part of radiative
corrections to the effective gravitational field is considered. It is shown
that variations of the Feynman parameter in gauge conditions fixing the general
covariance are equivalent to spacetime diffeomorphisms. This result is proved
for arbitrary gauge conditions at the one-loop order. It implies that the
gravitational radiative corrections of the order \hbar^0 to the spacetime
metric can be physically interpreted in a purely classical manner. As an
example, the effective gravitational field of a black hole is calculated in the
first post-Newtonian approximation, and the secular precession of a test
particle orbit in this field is determined.Comment: 8 pages, LaTeX, 1 eps figure. Proof of the theorem and typos
correcte