108 research outputs found

    Crack phase-field modeling of anisotropic rupture in fibrous soft tissues

    Get PDF
    The estimation of rupture in fibrous soft tissues has emerged as a central task in medical monitoring and risk assessment of diseases such as aortic dissection and aneurysms. In an attempt to address the challenges we have established a computational framework within the context of crack phase-field modeling and proposed an energy-based anisotropic failure criterion based on the distinction of isotropic and anisotropic material responses. Numerically we compare that criterion with other anisotropic failure criteria, in particular we analyze their capability to describe an admissible failure surface and how a crack can be propagated. A canonical rate-dependent setting of the crack phase-field model is formulated and solved in a weak sense by a standard Galerkin procedure featuring a one-pass operator-splitting algorithm on the temporal side. The anisotropic failure criteria are tested according to their performance on reflecting an admissible initiation, and crack propagation with an emphasis placed upon the aortic dissection

    On fiber dispersion models: exclusion of compressed fibers and spurious model comparisons

    Get PDF
    Fiber dispersion in collagenous soft tissues has an important influence on the mechanical response, and the modeling of the collagen fiber architecture and its mechanics has developed significantly over the last few years. The purpose of this paper is twofold, first to develop a method for excluding compressed fibers within a dispersion for the generalized structure tensor (GST) model, which several times in the literature has been claimed not to be possible, and second to draw attention to several erroneous and misleading statements in the literature concerning the relative values of the GST and the angular integration (AI) models. For the GST model we develop a rather simple method involving a deformation dependent dispersion parameter that allows the mechanical influence of compressed fibers within a dispersion to be excluded. The theory is illustrated by application to simple extension and simple shear in order to highlight the effect of exclusion. By means of two examples we also show that the GST and the AI models have equivalent predictive power, contrary to some claims in the literature. We conclude that from the theoretical point of view neither of these two models is superior to the other. However, as is well known and as we now emphasize, the GST model has proved to be very successful in modeling the data from experiments on a wide range of tissues, and it is easier to analyze and simpler to implement than the AI approach, and the related computational effort is much lower

    Viscoelastic parameter identification of human brain tissue

    Get PDF
    Understanding the constitutive behavior of the human brain is critical to interpret the physical environment during neurodevelopment, neurosurgery, and neurodegeneration. A wide variety of constitutive models has been proposed to characterize the brain at different temporal and spatial scales. Yet, their model parameters are typically calibrated with a single loading mode and fail to predict the behavior under arbitrary loading conditions. Here we used a finite viscoelastic Ogden model with six material parameters–an elastic stiffness, two viscoelastic stiffnesses, a nonlinearity parameter, and two viscous time constants–to model the characteristic nonlinearity, conditioning, hysteresis and tension-compression asymmetry of the human brain. We calibrated the model under shear, shear relaxation, compression, compression relaxation, and tension for four different regions of the human brain, the cortex, basal ganglia, corona radiata, and corpus callosum. Strikingly, unconditioned gray matter with 0.36 kPa and white matter with 0.35 kPa were equally stiff, whereas conditioned gray matter with 0.52 kPa was three times stiffer than white matter with 0.18 kPa. While both unconditioned viscous time constants were larger in gray than in white matter, both conditioned constants were smaller. These rheological differences suggest a different porosity between both tissues and explain–at least in part–the ongoing controversy between reported stiffness differences in gray and white matter. Our unconditioned and conditioned parameter sets are readily available for finite element simulations with commercial software packages that feature Ogden type models at finite deformations. As such, our results have direct implications on improving the accuracy of human brain simulations in health and disease

    High-quality conforming hexahedral meshes of patient-specific abdominal aortic aneurysms including their intraluminal thrombi

    Get PDF
    In order to perform finite element (FE) analyses of patient-specific abdominal aortic aneurysms, geometries derived from medical images must be meshed with suitable elements. We propose a semi-automatic method for generating conforming hexahedral meshes directly from contours segmented from medical images. Magnetic resonance images are generated using a protocol developed to give the abdominal aorta high contrast against the surrounding soft tissue. These data allow us to distinguish between the different structures of interest. We build novel quadrilateral meshes for each surface of the sectioned geometry and generate conforming hexahedral meshes by combining the quadrilateral meshes. The three-layered morphology of both the arterial wall and thrombus is incorporated using parameters determined from experiments. We demonstrate the quality of our patient-specific meshes using the element Scaled Jacobian. The method efficiently generates high-quality elements suitable for FE analysis, even in the bifurcation region of the aorta into the iliac arteries. For example, hexahedral meshes of up to 125,000 elements are generated in less than 130 s, with 94.8 % of elements well suited for FE analysis. We provide novel input for simulations by independently meshing both the arterial wall and intraluminal thrombus of the aneurysm, and their respective layered morphologies

    Analysis and simulations for a phase‐field fracture model at finite strains based on modified invariants

    Get PDF
    Phase‐field models have already been proven to predict complex fracture patterns for brittle fracture at small strains. In this paper we discuss a model for phase‐field fracture at finite deformations in more detail. Among the identification of crack location and projection of crack growth the numerical stability is one of the main challenges in solid mechanics. Here we present a phase‐field model at finite strains, which takes into account the anisotropy of damage by applying an anisotropic split of the modified invariants of the right Cauchy‐Green strain tensor. We introduce a suitable weak notion of solution that also allows for a spatial and temporal discretization of the model. In this framework we study the existence of solutions and we show that the time‐discrete solutions converge in a weak sense to a solution of the time‐continuous formulation of the model. Numerical examples in two and three space dimensions illustrate the range of validity of the analytical results
    • 

    corecore