105 research outputs found

    The risk of various types of cardiovascular diseases in mutation positive familial hypercholesterolemia; a review

    Get PDF
    Familial hypercholesterolemia (FH) is a common, inherited disease characterized by high levels of low-density lipoprotein Cholesterol (LDL-C) from birth. Any diseases associated with increased LDL-C levels including atherosclerotic cardiovascular diseases (ASCVDs) would be expected to be overrepresented among FH patients. There are several clinical scoring systems aiming to diagnose FH, however; most individuals who meet the clinical criteria for a FH diagnosis do not have a mutation causing FH. In this review, we aim to summarize the literature on the risk for the various forms of ASCVD in subjects with a proven FH-mutation (FH+). We searched for studies on FH+ and cardiovascular diseases and also included our and other groups published papers on FH + on a wide range of cardiovascular and other diseases of the heart and vessels. FH + patients are at a markedly increased risk of a broad range of ASCVD. Acute myocardial infarction (AMI) is the most common in absolute numbers, but also aortic valve stenosis is by far associated with the highest excess risk. Per thousand patients, we observed 3.6 incident AMI per year compared to 1.9 incident aortic valve stenosis, however, standardized incidence ratio (SIR) for incident AMI was 2.3 compared to 7.9 for incident aortic valve stenosis. Further, occurrence of ischemic stroke seems not to be associated with increased risk in FH+. Clinicians should be aware of the excess risk of almost all kind of ASCVD in FH+, and the neutral risk of stroke need to be studied further in FH + patients.publishedVersio

    Gut microbiota is associated with dietary intake and metabolic markers in healthy individuals

    Get PDF
    Background: Metabolic diseases have been related to gut microbiota, and new knowledge indicates that diet impacts host metabolism through the gut microbiota. Identifying specific gut bacteria associated with both diet and metabolic risk markers may be a potential strategy for future dietary disease prevention. However, studies investigating the association between the gut microbiota, diet, and metabolic markers in healthy indi-viduals are scarce.Objective: We explored the relationship between a panel of gut bacteria, dietary intake, and metabolic and anthropometric markers in healthy adults.Design: Forty-nine volunteers were included in this cross-sectional study. Measures of glucose, serum tri-glyceride, total cholesterol, hemoglobin A1c (HbA1c), blood pressure (BP), and body mass index (BMI) were collected after an overnight fast, in addition to fecal samples for gut microbiota analyzes using a targeted approach with a panel of 48 bacterial DNA probes and assessment of dietary intake by a Food Frequency Questionnaire (FFQ). Correlations between gut bacteria, dietary intake, and metabolic and anthropometric markers were assessed by Pearson’s correlation. Gut bacteria varying according to dietary intake and metabolic markers were assessed by a linear regression model and adjusted for age, sex, and BMI.Results: Of the 48 gut bacteria measured, 24 and 16 bacteria correlated significantly with dietary intake and metabolic and/or anthropometric markers, respectively. Gut bacteria including Alistipes, Lactobacillus spp., and Bacteroides stercoris differed according to the intake of the food components, fiber, sodium, saturated fatty acids, and dietary indices, and metabolic markers (BP and total cholesterol) after adjustments. Notably, Bacteroides stercoris correlated positively with the intake of fiber, grain products, and vegetables, and higher Bacteroides stercoris abundance was associated with higher adherence to Healthy Nordic Food Index (HNFI) and lower diastolic BP after adjustment.Conclusion: Our findings highlight the relationship between the gut microbiota, diet, and metabolic mark-ers in healthy individuals. Further investigations are needed to address whether these findings are causally linked and whether targeting these gut bacteria can prevent metabolic diseases.publishedVersio

    Replacing saturated fatty acids with polyunsaturated fatty acids increases the abundance of Lachnospiraceae and is associated with reduced total cholesterol levels-a randomized controlled trial in healthy individuals

    Get PDF
    Improving dietary fat quality strongly affects serum cholesterol levels and hence the risk of cardiovascular diseases (CVDs). Recent studies have identified dietary fat as a potential modulator of the gut microbiota, a central regulator of host metabolism including lipid metabolism. We have previously shown a significant reduction in total cholesterol levels after replacing saturated fatty acids (SFAs) with polyunsaturated fatty acids (PUFAs). The aim of the present study was to investigate the effect of dietary fat quality on gut microbiota, short-chain fatty acids (SCFAs), and bile acids in healthy individuals. In addition, to investigate how changes in gut microbiota correlate with blood lipids, bile acids, and fatty acids.publishedVersio

    Substitution of TAG oil with diacylglycerol oil in food items improves the predicted 10 years cardiovascular risk score in healthy, overweight subjects

    Get PDF
    Dietary fat is normally in TAG form, but diacylglycerol (DAG) is a natural component of edible oils. Studies have shown that consumption of DAG results in metabolic characteristics that are distinct from those of TAG, which may be beneficial in preventing and managing obesity. The objective of the present study was to investigate if food items in which part of the TAG oil is replaced with DAG oil combined with high α-linolenic acid (ALA) content would influence metabolic markers. A 12-week double-blinded randomised controlled parallel-design study was conducted. The participants (n 23) were healthy, overweight men and women, aged 37–67 years, BMI 27–35 kg/m2, with waist circumference >94 cm (men) and >88 cm (women). The two groups received 20 g margarine, 11 g mayonnaise and 12 g oil per d, containing either high ALA and sn-1,3-DAG or high ALA and TAG. Substitution of TAG oil with DAG oil in food items for 12 weeks led to an improvement of the predicted 10 years cardiovascular risk score in overweight subjects by non-significantly improving markers of health such as total body fat percentage, trunk fat mass, alanine aminotransferase, systolic blood pressure, γ-glutamyl transferase, alkaline phosphatase and total fat-free mass. This may suggest that replacing TAG oil with DAG oil in healthy, overweight individuals may have beneficial metabolic effects

    Increased Plasma Levels of Triglyceride-Enriched Lipoproteins Associate with Systemic Inflammation, Lipopolysaccharides, and Gut Dysbiosis in Common Variable Immunodeficiency

    Get PDF
    Purpose: Triglycerides (TG) and their major transport lipoprotein in the circulation (VLDL) appear to be related to inflammation. Patients with common variable immunodeficiency (CVID) have inflammatory complications associated with gut microbial dysbiosis. We hypothesized that CVID patients have disturbed TG/VLDL profiles associated with these clinical characteristics. Methods: We measured plasma concentrations of TGs, inflammatory markers, and lipopolysaccharide (LPS) in 95 CVID patients and 28 healthy controls. Additionally, in 40 CVID patients, we explored plasma lipoprotein profiling, fatty acid, gut microbial dysbiosis, and diet. Results: TG levels were increased in CVID patients as compared to healthy controls (1.36 ± 0.53 mmol/l versus 1.08 ± 0.56 [mean, SD], respectively, P = 0.008), particularly in the clinical subgroup “Complications,” characterized by autoimmunity and organ-specific inflammation, compared to “Infection only” (1.41 mmol/l, 0.71[median, IQR] versus [1.02 mmol/l, 0.50], P = 0.021). Lipoprotein profile analyses showed increased levels of all sizes of VLDL particles in CVID patients compared to controls. TG levels correlated positively with CRP (rho = 0.256, P = 0.015), IL-6 (rho = 0.237, P = 0.021), IL-12 (rho = 0.265, P = 0.009), LPS (r = 0.654, P = 6.59 × 10−13), CVID-specific gut dysbiosis index (r = 0.315, P = 0.048), and inversely with a favorable fatty acid profile (docosahexaenoic acid [rho =  − 0.369, P = 0.021] and linoleic acid [rho =  − 0.375, P = 0.019]). TGs and VLDL lipids did not appear to be associated with diet and there were no differences in body mass index (BMI) between CVID patients and controls. Conclusion: We found increased plasma levels of TGs and all sizes of VLDL particles, which were associated with systemic inflammation, LPS, and gut dysbiosis in CVID, but not diet or BMI.publishedVersio

    LIGHT/TNFSF14 is increased in patients with type 2 diabetes mellitus and promotes islet cell dysfunction and endothelial cell inflammation in vitro

    Get PDF
    Published version. Source at http://dx.doi.org/10.1007/s00125-016-4036-y Aims/hypothesis: Activation of inflammatory pathways is involved in the pathogenesis of type 2 diabetes mellitus. On the basis of its role in vascular inflammation and in metabolic disorders, we hypothesised that the TNF superfamily (TNFSF) member 14 (LIGHT/TNFSF14) could be involved in the pathogenesis of type 2 diabetes mellitus. Methods: Plasma levels of LIGHT were measured in two cohorts of type 2 diabetes mellitus patients (191 Italian and 40 Norwegian). Human pancreatic islet cells and arterial endothelial cells were used to explore regulation and relevant effects of LIGHT in vitro. Results: Our major findings were: (1) in both diabetic cohorts, plasma levels of LIGHT were significantly raised compared with sex- and age-matched healthy controls (n = 32); (2) enhanced release from activated platelets seems to be an important contributor to the raised LIGHT levels in type 2 diabetes mellitus; (3) in human pancreatic islet cells, inflammatory cytokines increased the release of LIGHT and upregulated mRNA and protein levels of the LIGHT receptors lymphotoxin β receptor (LTβR) and TNF receptor superfamily member 14 (HVEM/TNFRSF14); (4) in these cells, LIGHT attenuated the insulin release in response to high glucose at least partly via pro-apoptotic effects; and (5) in human arterial endothelial cells, glucose boosted inflammatory response to LIGHT, accompanied by an upregulation of mRNA levels of HVEM (also known as TNFRSF14) and LTβR (also known as LTBR). Conclusions/interpretation: Our findings show that patients with type 2 diabetes mellitus are characterised by increased plasma LIGHT levels. Our in vitro findings suggest that LIGHT may contribute to the progression of type 2 diabetes mellitus by attenuating insulin secretion in pancreatic islet cells and by contributing to vascular inflammation

    Effects of Exercise on Gene Expression of Inflammatory Markers in Human Peripheral Blood Cells: A Systematic Review

    Get PDF
    Regular physical activity seems to be one of the most important contributors to prevent disease and promote health. Being physically active reduces the risk of developing chronic diseases such as cardiovascular disease, diabetes, and some types of cancers. The molecular mechanisms are however not fully elucidated. Depending on duration and intensity, exercise will cause disruption of muscle fibers triggering a temporary inflammatory response. This response may not only involve the muscle tissue, but also peripheral tissues such as white blood cells, which are important components of the immune system. The immune system plays a vital role in the development of atherosclerosis, thereby making white blood cells relevant to study when looking at molecular mechanisms induced by physical activity. In this review, we summarize the existing literature on exercise and gene expression in human white blood cells, and discuss these results in relation to inflammation and atherosclerosis

    Metabolomic and gene expression analysis to study the effects of dietary saturated and polyunsaturated fats

    No full text
    Purpose of review Give an update on recent dietary intervention studies that have used peripheral blood mononuclear cell gene expression analysis and/or metabolic profiling to understand how intake of polyunsaturated and saturated fat affects and biological pathways linked to cardiovascular disease. Recent findings Several studies showed that intake of fish oil and vegetable oil, high in omega-3 fatty acids, reduced expression level of genes involved in inflammation. One intervention study showed that gene transcripts encoding genes involved inflammation and lipid metabolism increased after intake of polyunsaturated fat (mainly omega-6 fatty acids) compared to saturated fat. Additionally, using targeted metabolomics, the concentrations of atherogenic lipoprotein particles and several metabolites including palmitoylcarnitine, myristoylcarnitine, and kynurenine were reduced after intake of polyunsaturated fat compared to saturated fat, whereas acetate and acetoacetate were increased. The use of targeted metabolomics showed that overfeeding with polyunsaturated fat reduced the serum concentration of ceramides, dihydroceramides, glucosylceramides, and lactosylceramides, whereas overfeeding with saturated fat increased serum concentration of these metabolites. Summary The use of gene expression profiling and metabolomics are promising tools to identify possible new biomarkers linking fat quality to cardiovascular disease risk

    Comparison of bioavailability of krill oil versus fish oil and health effect

    No full text
    Background: The aim of this review is to summarize the effects of krill oil (KO) or fish oil (FO) on eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) incorporation in plasma phospholipids or membrane of red blood cells (RBCs) as shown in human and animal studies. Furthermore, we discuss the findings in relation to the possible different health effects, focusing on lipids, inflammatory markers, cardiovascular disease risk, and biological functions of these two sources of long-chain n-3 polyunsaturated fatty acids (PUFAs). Methods: A literature search was conducted in PubMed in January 2015. In total, 113 articles were identified, but based on selection criteria, 14 original papers were included in the review. Results: Studies on bioavailability of EPA and DHA from KO and FO in humans and animals are limited and the interpretation is difficult, as different amounts of EPA and DHA have been used, duration of intervention differs, and different study groups have been included. Two human studies – one postprandial study and one intervention study – used the same amount of EPA and DHA from KO or FO, and they both showed that the bioavailability of EPA and DHA from KO seems to be higher than that from FO. Limited effects of KO and FO on lipids and inflammatory markers in human and animal studies were reported. Gene expression data from animal studies showed that FO upregulated the cholesterol synthesis pathway, which was the opposite of the effect mediated by KO. KO also regulated far more metabolic pathways than FO, which may indicate different biological effects of KO and FO. Conclusion: There seems to be a difference in bioavailability of EPA and DHA after intake of KO and FO, but more studies are needed before a firm conclusion can be made. It is also necessary to document the beneficial health effects of KO with more human studies and to elucidate if these effects differ from those after regular fish and FO intake
    corecore