962 research outputs found

    Gas Seepage and Pockmark Formation From Subsurface Reservoirs:Insights From Table-Top Experiments

    Get PDF
    Pockmarks are morphological depressions commonly observed in ocean and lake floors. Pockmarks form by fluid (typically gas) seepage thorough a sealing sedimentary layer, deforming and breaching the layer. The seepage-induced sediment deformation mechanisms, and their links to the resulting pockmarks morphology, are not well understood. To bridge this gap, we conduct laboratory experiments in which gas seeps through a granular (sand) reservoir, overlaid by a (clay) seal, both submerged under water. We find that gas rises through the reservoir and accumulates at the seal base. Once sufficient gas over-pressure is achieved, gas deforms the seal, and finally escapes via either: (a) doming of the seal followed by dome breaching via fracturing; (b) brittle faulting, delineating a plug, which is lifted by the gas seeping through the bounding faults; or (c) plastic deformation by bubbles ascending through the seal. The preferred mechanism is found to depend on the seal thickness and stiffness: in stiff seals, a transition from doming and fracturing to brittle faulting occurs as the thickness increases, whereas bubble rise is preferred in the most compliant, thickest seals. Seepage can also occur by mixed modes, such as bubbles rising in faults. Repeated seepage events suspend the sediment at the surface and create pockmarks. We present a quantitative analysis that explains the tendency for the various modes of deformation observed experimentally. Finally, we connect simple theoretical arguments with field observations, highlighting similarities and differences that bound the applicability of laboratory experiments to natural pockmarks.</p

    In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice

    Get PDF
    Although tau is a cytoplasmic protein, it is also found in brain extracellular fluids, e.g., CSF. Recent findings suggest that aggregated tau can be transferred between cells and extracellular tau aggregates might mediate spread of tau pathology. Despite these data, details of whether tau is normally released into the brain interstitial fluid (ISF), its concentration in ISF in relation to CSF, and whether ISF tau is influenced by its aggregation are unknown. To address these issues, we developed a microdialysis technique to analyze monomeric ISF tau levels within the hippocampus of awake, freely moving mice. We detected tau in ISF of wild-type mice, suggesting that tau is released in the absence of neurodegeneration. ISF tau was significantly higher than CSF tau and their concentrations were not significantly correlated. Using P301S human tau transgenic mice (P301S tg mice), we found that ISF tau is fivefold higher than endogenous murine tau, consistent with its elevated levels of expression. However, following the onset of tau aggregation, monomeric ISF tau decreased markedly. Biochemical analysis demonstrated that soluble tau in brain homogenates decreased along with the deposition of insoluble tau. Tau fibrils injected into the hippocampus decreased ISF tau, suggesting that extracellular tau is in equilibrium with extracellular or intracellular tau aggregates. This technique should facilitate further studies of tau secretion, spread of tau pathology, the effects of different disease states on ISF tau, and the efficacy of experimental treatments

    Monitoring and modeling infiltration–recharge dynamics of managed aquifer recharge with desalinated seawater

    Get PDF
    We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors, and observation wells. During a month (January 2015) of continuous intensive MAR (2.45  ×  10<sup>6</sup> m<sup>3</sup> discharged to a 10.7 ha area), groundwater level has risen by 17 m attaining full connection with the pond, while average infiltration rates declined by almost 2 orders of magnitude (from  ∼  11 to  ∼  0.4 m d<sup>−1</sup>). This reduction can be explained solely by the lithology of the unsaturated zone that includes relatively low-permeability sediments. Clogging processes at the pond-surface – abundant in many MAR operations – are negated by the high-quality desalinated seawater (turbidity  ∼  0.2 NTU, total dissolved solids  ∼  120 mg L<sup>−1</sup>) or negligible compared to the low-permeability layers. Recharge during infiltration was estimated reasonably well by simple analytical models, whereas a numerical model was used for estimating groundwater recharge after the end of infiltration. It was found that a calibrated numerical model with a one-dimensional representative sediment profile is able to capture MAR dynamics, including temporal reduction of infiltration rates, drainage and groundwater recharge. Measured infiltration rates of an independent MAR event (January 2016) fitted well to those calculated by the calibrated numerical model, showing the model validity. The successful quantification methodologies of the temporal groundwater recharge are useful for MAR practitioners and can serve as an input for groundwater flow models

    The young age of the extremely metal-deficient blue compact dwarf galaxy SBS 1415+437

    Full text link
    We use Multiple Mirror Telescope (MMT) spectrophotometry and Hubble Space Telescope (HST) Faint Object Spectrograph (FOS) spectra and Wide Field and Planetary Camera 2 (WFPC2) V and I images to study the properties and evolutionary status of the nearby (D = 11.4 Mpc) extremely metal-deficient blue compact dwarf (BCD) galaxy SBS 1415+437=CG 389. The oxygen abundance in the galaxy is 12+log(O/H)=7.60+/-0.01 or Zsun/21. The helium mass fraction in SBS 1415+437 is Y=0.246+/-0.004 which agrees with the primordial helium abundance determined by Izotov & Thuan using a much larger sample of BCDs. The alpha-elements-to-oxygen abundance ratios (Ne/O, S/O, Ar/O) are in very good agreement with the mean values for other metal-deficient BCDs and are consistent with the scenario that these elements are made in massive stars. The Fe/O abundance ratio is ~2 times smaller than the solar ratio. The Si/O ratio is close to the solar value, implying that silicon is not significantly depleted into dust grains. The values of the N/O and C/O ratios imply that intermediate-mass stars have not had time to evolve in SBS 1415+437 and release their nucleosynthesis products and that both N and C in the BCD have been made by massive stars only. This sets an upper limit of ~100 Myr on the age of SBS 1415+437. The (V-I) color of the low-surface-brightness component of the galaxy is blue (<0.4 mag) indicative of a very young underlying stellar population. The (V-I) - I color-magnitude diagrams of the resolved stellar populations in different regions of SBS 1415+437 suggest propagating star formation from the NE side of the galaxy to the SW. All regions in SBS 1415+437 possess very blue spectral energy distributions (SED). We find that the ages of the stellar populations in SBS 1415+437 to range from a few Myr to 100 Myr.Comment: 25 pages, 12 PS and 5 JPG figures, to appear in Ap

    The OGLE View of Microlensing towards the Magellanic Clouds. III. Ruling out sub-solar MACHOs with the OGLE-III LMC data

    Full text link
    In the third part of the series presenting the Optical Gravitational Lensing Experiment (OGLE) microlensing studies of the dark matter halo compact objects (MACHOs) we describe results of the OGLE-III monitoring of the Large Magellanic Cloud (LMC). This unprecedented data set contains almost continuous photometric coverage over 8 years of about 35 million objects spread over 40 square degrees. We report a detection of two candidate microlensing events found with the automated pipeline and an additional two, less probable, candidate events found manually. The optical depth derived for the two main candidates was calculated following a detailed blending examination and detection efficiency determination and was found to be tau=(0.16+-0.12)10^-7. If the microlensing signal we observe originates from MACHOs it means their masses are around 0.2 M_Sun and they compose only f=3+-2 per cent of the mass of the Galactic Halo. However, the more likely explanation of our detections does not involve dark matter compact objects at all and rely on natural effect of self-lensing of LMC stars by LMC lenses. In such a scenario we can almost completely rule out MACHOs in the sub-solar mass range with an upper limit at f<7 per cent reaching its minimum of f<4 per cent at M=0.1 M_Sun. For masses around M=10 M_Sun the constraints on the MACHOs are more lenient with f ~ 20 per cent. Owing to limitations of the survey there is no reasonable limit found for heavier masses, leaving only a tiny window of mass spectrum still available for dark matter compact objects.Comment: Accepted for publication in MNRAS. On-line data available on OGLE website: http://ogle.astrouw.edu.p

    Large Scale Structure Formation with Global Topological Defects. A new Formalism and its implementation by numerical simulations

    Get PDF
    We investigate cosmological structure formation seeded by topological defects which may form during a phase transition in the early universe. First we derive a partially new, local and gauge invariant system of perturbation equations to treat microwave background and dark matter fluctuations induced by topological defects or any other type of seeds. We then show that this system is well suited for numerical analysis of structure formation by applying it to seeds induced by fluctuations of a global scalar field. Our numerical results are complementary to previous investigations since we use substantially different methods. The resulting microwave background fluctuations are compatible with older simulations. We also obtain a scale invariant spectrum of fluctuations with about the same amplitude. However, our dark matter results yield a smaller bias parameter compatible with b2b\sim 2 on a scale of 20Mpc20 Mpc in contrast to previous work which yielded to large bias factors. Our conclusions are thus more positive. According to the aspects analyzed in this work, global topological defect induced fluctuations yield viable scenarios of structure formation and do better than standard CDM on large scales.Comment: uuencoded, compressed tar-file containing the text in LaTeX and 12 Postscript Figures, 41 page

    The Blue Straggler Population in Dwarf Galaxies

    Full text link
    In this chapter I review the recent developments regarding the study of Blue Stragglers (BSS) in dwarf galaxies. The loose density environment of dwarf galaxies resembles that of the Galactic Halo, hence it is natural to compare their common BSS properties. At the same time, it is unescapable to compare with the BSS properties in Galactic Globular clusters, which constitute the reference point for BSS studies. Admittedly, the literature on BSS in dwarf galaxies is not plentiful. The limitation is mostly due to the large distance to even the closest dwarf galaxies. Nevertheless, recent studies have allowed a deeper insight on the BSS photometric properties that are worth examining.Comment: Chapter 6, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe

    UV-dropout Galaxies in the GOODS-South Field from WFC3 Early Release Science Observations

    Get PDF
    We combine new high sensitivity ultraviolet (UV) imaging from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) with existing deep HST/Advanced Camera for Surveys (ACS) optical images from the Great Observatories Origins Deep Survey (GOODS) program to identify UV-dropouts, which are Lyman break galaxy (LBG) candidates at z~1-3. These new HST/WFC3 observations were taken over 50 sq.arcmin in the GOODS-South field as a part of the Early Release Science program. The uniqueness of these new UV data is that they are observed in 3 UV/optical (WFC3 UVIS) channel filters (F225W, F275W and F336W), which allows us to identify three different sets of UV-dropout samples. We apply Lyman break dropout selection criteria to identify F225W-, F275W- and F336W-dropouts, which are z~1.7, 2.1 and 2.7 LBG candidates, respectively. Our results are as follows: (1) these WFC3 UVIS filters are very reliable in selecting LBGs with z~2.0, which helps to reduce the gap between the well studied z~>3 and z~0 regimes, (2) the combined number counts agrees very well with the observed change in the surface densities as a function of redshift when compared with the higher redshift LBG samples; and (3) the best-fit Schechter function parameters from the rest-frame UV luminosity functions at three different redshifts fit very well with the evolutionary trend of the characteristic absolute magnitude, and the faint-end slope, as a function of redshift. This is the first study to illustrate the usefulness of the WFC3 UVIS channel observations to select z<3 LBGs. The addition of the new WFC3 on the HST has made it possible to uniformly select LBGs from z~1 to z~9, and significantly enhance our understanding of these galaxies using HST sensitivity and resolution.Comment: Accepted for publication in ApJ (24 pages, 7 figures

    Spectroscopic Constraints on the Form of the Stellar Cluster Mass Function

    Get PDF
    This contribution addresses the question of whether the initial cluster mass function (ICMF) has a fundamental limit (or truncation) at high masses. The shape of the ICMF at high masses can be studied using the most massive young (<10 Myr) clusters, however this has proven difficult due to low-number statistics. In this contribution we use an alternative method based on the luminosities of the brightest clusters, combined with their ages. If a truncation is present, a generic prediction (nearly independent of the cluster disruption law adopted) is that the median age of bright clusters should be younger than that of fainter clusters. In the case of an non-truncated ICMF, the median age should be independent of cluster luminosity. Here, we present optical spectroscopy of twelve young stellar clusters in the face-on spiral galaxy NGC 2997. The spectra are used to estimate the age of each cluster, and the brightness of the clusters is taken from the literature. The observations are compared with the model expectations of Larsen (2009) for various ICMF forms and both mass dependent and mass independent cluster disruption. While there exists some degeneracy between the truncation mass and the amount of mass independent disruption, the observations favour a truncated ICMF. For low or modest amounts of mass independent disruption, a truncation mass of 5-6*10^5 Msun is estimated, consistent with previous determinations. Additionally, we investigate possible truncations in the ICMF in the spiral galaxy M83, the interacting Antennae galaxies, and the collection of spiral and dwarf galaxies present in Larsen (2009) based on photometric catalogues taken from the literature, and find that all catalogues are consistent with having a (environmentally dependent) truncation in the cluster mass functions.Comment: 6 pages, 5 figures, in press, A&A Research Note

    Star formation in 30 Doradus

    Get PDF
    Using observations obtained with the Wide Field Camera 3 (WFC3) on board the Hubble Space Telescope (HST), we have studied the properties of the stellar populations in the central regions of 30 Dor, in the Large Magellanic Cloud. The observations clearly reveal the presence of considerable differential extinction across the field. We characterise and quantify this effect using young massive main sequence stars to derive a statistical reddening correction for most objects in the field. We then search for pre-main sequence (PMS) stars by looking for objects with a strong (> 4 sigma) Halpha excess emission and find about 1150 of them over the entire field. Comparison of their location in the Hertzsprung-Russell diagram with theoretical PMS evolutionary tracks for the appropriate metallicity reveals that about one third of these objects are younger than ~4Myr, compatible with the age of the massive stars in the central ionising cluster R136, whereas the rest have ages up to ~30Myr, with a median age of ~12Myr. This indicates that star formation has proceeded over an extended period of time, although we cannot discriminate between an extended episode and a series of short and frequent bursts that are not resolved in time. While the younger PMS population preferentially occupies the central regions of the cluster, older PMS objects are more uniformly distributed across the field and are remarkably few at the very centre of the cluster. We attribute this latter effect to photoevaporation of the older circumstellar discs caused by the massive ionising members of R136.Comment: 15 pages, 12 figures. Accepted for publication in The Astrophysical Journa
    corecore