72 research outputs found

    Development of a New, Precise Near-infrared Doppler Wavelength Reference: A Fiber Fabry-Perot Interferometer

    Full text link
    We present the ongoing development of a commercially available Micron Optics fiber-Fabry Perot Interferometer as a precise, stable, easy to use, and economic spectrograph reference with the goal of achieving <1 m/s long term stability. Fiber Fabry-Perot interferometers (FFP) create interference patterns by combining light traversing different delay paths. The interference creates a rich spectrum of narrow emission lines, ideal for use as a precise Doppler reference. This fully photonic reference could easily be installed in existing NIR spectrographs, turning high resolution fiber-fed spectrographs into precise Doppler velocimeters. First light results on the Sloan Digital Sky Survey III (SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph and several tests of major support instruments are also presented. These instruments include a SuperK Photonics fiber supercontinuum laser source and precise temperature controller. A high resolution spectrum obtained using the NIST 2-m Fourier transform spectrometer (FTS) is also presented. We find our current temperature control precision of the FFP to be 0.15 mK, corresponding to a theoretical velocity stability of 35 cm/s due to temperature variations of the interferometer cavity.Comment: 16 pages, 11 figures. To appear in the proceedings of the SPIE 2012 Astronomical Instrumentation and Telescopes conferenc

    Dural lymphatics regulate clearance of extracellular tau from the CNS

    Get PDF
    BackgroundAlzheimer's disease is characterized by two main neuropathological hallmarks: extracellular plaques of amyloid- (A) protein and intracellular aggregates of tau protein. Although tau is normally a soluble monomer that bind microtubules, in disease it forms insoluble, hyperphosphorylated aggregates in the cell body. Aside from its role in AD, tau is also involved in several other neurodegenerative disorders collectively called tauopathies, such as progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), some forms of frontotemporal dementia, and argyrophilic grain disease (AGD). The prion hypothesis suggests that after an initial trigger event, misfolded forms of tau are released into the extracellular space, where they spread through different brain regions, enter cells, and seeding previously normal forms. Thus understanding mechanisms regulating the clearance of extracellular tau from the CNS is important. The discovery of a true lymphatic system in the dura and its potential role in mediating A pathology prompted us to investigate its role in regulating extracellular tau clearance.MethodsTo study clearance of extracellular tau from the brain, we conjugated monomeric human tau with a near-infrared dye cypate, and injected this labeled tau in the parenchyma of both wild-type and K14-VEGFR3-Ig transgenic mice, which lack a functional CNS lymphatic system. Following injection we performed longitudinal imaging using fluorescence molecular tomography (FMT) and quantified fluorescence to calculate clearance of tau from the brain. To complement this, we also measured tau clearance to the periphery by measuring plasma tau in both groups of mice.ResultsOur results show that a significantly higher amount of tau is retained in the brains of K14-VEGFR3-Ig vs. wild type mice at 48 and 72h post-injection and its subsequent clearance to the periphery is delayed. We found that clearance of reference tracer human serum albumin (HSA) was also significantly delayed in the K14-VEGFR3-Ig mice.ConclusionsThe dural lymphatic system appears to play an important role in clearance of extracellular tau, since tau clearance is impaired in the absence of functional lymphatics. Based on our baseline characterization of extracellular tau clearance, future studies are warranted to look at the interaction between tau pathology and efficiency of lymphatic function.Peer reviewe

    Digital Signal Processing

    Get PDF
    Contains a research summary and reports on fifteen research projects.National Science Foundation FellowshipJoint Services Electronics Program (Contract DAAG29-78-C-0020)National Science Foundation (Grant ENG76-24117)U.S. Navy - Office of Naval Research (Contract N00014-75-C-0951)National Science Foundation (Grant ENG76-24117)Schlumberger-Doll Research Center FellowshipHertz Foundation FellowshipNational Aeronautics and Space Administration (Grant NSG-5157)U.S. Navy - Office of Naval Research (Contract N00014-77-C-0196

    Digital Signal Processing

    Get PDF
    Contains research objectives and reports on sixteen research projects.U.S. Navy - Office of Naval Research (Contract N00014-75-C-0852)National Science Foundation FellowshipNational Science Foundation (Grant ENG76-24117)U.S. Navy - Office of Naval Research (Contract N00014-77-C-0257)U.S. Air Force (Contract F19628-80-C-0002)U.S. Navy - Office of Naval Research (Contract N00014-75-C-0951)Schlumberger-Doll Research Center FellowshipHertz Foundation FellowshipGovernment of Pakistan ScholarshipU.S. Navy - Office of Naval Research (Contract N00014-77-C-0196

    The Seventh Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor correction

    The Fifth Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Fifth Data Release (DR5) of the Sloan Digital Sky Survey (SDSS). DR5 includes all survey quality data taken through June 2005 and represents the completion of the SDSS-I project (whose successor, SDSS-II will continue through mid-2008). It includes five-band photometric data for 217 million objects selected over 8000 square degrees, and 1,048,960 spectra of galaxies, quasars, and stars selected from 5713 square degrees of that imaging data. These numbers represent a roughly 20% increment over those of the Fourth Data Release; all the data from previous data releases are included in the present release. In addition to "standard" SDSS observations, DR5 includes repeat scans of the southern equatorial stripe, imaging scans across M31 and the core of the Perseus cluster of galaxies, and the first spectroscopic data from SEGUE, a survey to explore the kinematics and chemical evolution of the Galaxy. The catalog database incorporates several new features, including photometric redshifts of galaxies, tables of matched objects in overlap regions of the imaging survey, and tools that allow precise computations of survey geometry for statistical investigations.Comment: ApJ Supp, in press, October 2007. This paper describes DR5. The SDSS Sixth Data Release (DR6) is now public, available from http://www.sdss.or

    On the Last 10 Billion Years of Stellar Mass Growth in Star-Forming Galaxies

    Full text link
    The star formation rate - stellar mass relation (SFR-M*) and its evolution (i.e., the SFR main sequence) describes the growth rate of galaxies of a given stellar mass and at a given redshift. Assuming that present-day star-forming galaxies were always star-forming in the past, these growth rate observations can be integrated to calculate average star formation histories (SFHs). Using this Main Sequence Integration (MSI) approach, we trace present-day massive star-forming galaxies back to when they were 10-20% of their current stellar mass. The integration is robust throughout those epochs: the SFR data underpinning our calculations is consistent with the evolution of stellar mass density in this regime. Analytic approximations to these SFHs are provided. Integration-based results reaffirm previous suggestions that current star-forming galaxies formed virtually all of their stellar mass at z<2. It follows that massive galaxies observed at z>2 are not the typical progenitors of star-forming galaxies today. We also check MSI-based SFHs against those inferred from analysis of the fossil record -- from spectral energy distributions (SEDs) of star-forming galaxies in the Sloan Digital Sky Survey, and color magnitude diagrams (CMDs) of resolved stars in dwarf irregular galaxies. Once stellar population age uncertainties are accounted for, the main sequence is in excellent agreement with SED-based SFHs (from VESPA). Extrapolating SFR main sequence observations to dwarf galaxies, we find differences between MSI results and SFHs from CMD analysis of ACS Nearby Galaxy Survey Treasury and Local Group galaxies. Resolved dwarfs appear to grow much slower than main sequence trends imply, and also slower than slightly higher mass SED-analyzed galaxies. This difference may signal problems with SFH determinations, but it may also signal a shift in star formation trends at the lowest stellar masses.Comment: 20 pages, 10 figures. Accepted for publication in Ap
    • …
    corecore