29 research outputs found

    Field trial on glucose-induced insulin and metabolite responses in Estonian Holstein and Estonian Red dairy cows in two herds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin secretion and tissue sensitivity to insulin is considered to be one of the factors controlling lipid metabolism <it>post partum</it>. The objective of this study was to compare glucose-induced blood insulin and metabolite responses in Estonian Holstein (EH, n = 14) and Estonian Red (ER, n = 14) cows.</p> <p>Methods</p> <p>The study was carried out using the glucose tolerance test (GTT) performed at 31 ± 1.9 days <it>post partum</it> during negative energy balance. Blood samples were obtained at -15, -5, 5, 10, 20, 30, 40, 50 and 60 min relative to infusion of 0.15 g/kg BW glucose and analysed for glucose, insulin, triglycerides (TG), non-esterified fatty acids (NEFA), cholesterol and β-hydroxybutyrate (BHB). Applying the MIXED Procedure with the SAS System the basal concentration of cholesterol, and basal concentration and concentrations at post-infusion time points for other metabolites, area under the curve (AUC) for glucose and insulin, clearance rate (CR) for glucose, and maximum increase from basal concentration for glucose and insulin were compared between breeds.</p> <p>Results</p> <p>There was a breed effect on blood NEFA (<it>P </it>< 0.05) and a time effect on all metabolites concentration (<it>P </it>< 0.01). The following differences were observed in EH compared to ER: lower blood insulin concentration 5 min after glucose infusion (<it>P </it>< 0.05), higher glucose concentration 20 (<it>P </it>< 0.01) and 30 min (<it>P </it>< 0.05) after infusion, and higher NEFA concentration before (<it>P </it>< 0.01) and 5 min after infusion (P < 0.05). Blood TG concentration in ER remained stable, while in EH there was a decrease from the basal level to the 40<sup>th </sup>min nadir (<it>P </it>< 0.01), followed by an increase to the 60<sup>th </sup>min postinfusion (<it>P </it>< 0.01).</p> <p>Conclusion</p> <p>Our results imply that glucose-induced changes in insulin concentration and metabolite responses to insulin differ between EH and ER dairy cows.</p

    Adaptation strategies to counter climate change impact on sheep

    No full text
    Climate change has proved to impose potential negative effects on species survival, ecosystems stability and sustainable livestock production around the globe. Among the various environmental factors, heat stress is well known for its harmful effects on livestock and related production losses. Sheep exposed to heat stress show lower body growth and hide quality and compromised reproductive functions in both males and females. Adapting to the changing climate requires appropriate manipulations in the production system by taking into account the positive effects and attempting to diminish the negative effects of climate change. The highly adapted indigenous breeds identified by marker-assisted selection can be used as an efficient tool for developing thermotolerant breeds through improved breeding programmes. Promotion of such breeds can improve production efficiency and may lead to fewer greenhouse gas emissions. Further, the local people, especially women, are good managers of natural resources and possess excellent skills to utilize the natural resources efficiently. Hence, occasional training and a participatory research approach into the roles of women assist the tackling of climate change in the rural areas. In addition, well-organized early warning systems avoid severe damage due to unexpected disasters by providing sufficient time to prepare effective responses. Development of skilled disease surveillance supported with effective health services may effectively control the spread of climate change-related diseases in sheep. Furthermore, the production system requires improved water resource management to provide sufficient water for sheep production in the arid and semi-arid regions. Cultivation of drought-tolerant fodder varieties in extremely hot areas is an efficient adaptive strategy to ensure sufficient supply of feed during scarcity periods. Finally, strengthening extension services and building awareness through capacity-building programmes helps the livestock keepers to improve their adaptive capacities against climate change. Adaptation strategies related to cold stress include advanced cold-tolerant breeding programmes, migration in extreme winter and adoption of proper cold management practices. According to the predictions by various international bodies, the consequences of climate change will be on the rise in the future. Hence, adequate cost-effective management strategies appear to be the immediate need of the hour for adapting sheep production systems to the changing climate
    corecore