380 research outputs found
Time of Suckling Implant Influences onWeaning Weight, Post-weaning Performance, and Carcass Traits in Steer Calves
The effect of time of suckling calf implant (SCI) use on weaning weight (WW), post-weaning performance and subsequent carcass traits was compared in steer calves produced on one ranch in western SD. Calves were born in March and April of each year and were reared on native range prior to weaning. The SCI strategies used included: non implanted controls (NI) or implanted with Synovex C either in May (MAY), or August (AUG). Age groups of dams (≥4 years) were managed separately through the breeding seasons. At weaning (late October) all calves were weaned and relocated to the SDSU Ruminant Nutrition Center feedlot. Steers were individually weighed, vaccinated, and treated for parasites and the processing body weight recorded was considered the WW. Steers were sorted into feedlot pens by SCI treatment (8 or 9 steers/pen; 8 pens/treatment; 24 pens/yr). Steers were backgrounded and finished using diets and management typical for this region and included the use of implants uniformly across SCI treatments. Both the MAY and AUG implant treatments increased WW over non-implanted calves. The magnitude of this was response interacted with the age of the dams. Steers nursing mature cows and implanted in May had the greatest increase in WW over NI (40 lb). The WW advantage for steers nursing mature cows and implanted in August was reduced to 17 lb. Timing of implant administration had the opposite effect in young cows and was more beneficial when steers were implanted in August. The weight advantage due to suckling implants persisted through to carcass weight. The SCI treatments did not affect the post-weaning ADG or feed efficiency of the steers and had no adverse effects on Quality Grade of the carcasses produced. There was a substantial benefit to the cow calf producer to match the time of implant administration with the age of the dam with no adverse impact on overall beef production
Towards hardware acceleration of neuroevolution for multimedia processing applications on mobile devices
This paper addresses the problem of accelerating large artificial neural networks (ANN), whose topology and weights can evolve via the use of a genetic algorithm. The proposed digital hardware architecture is capable of processing any evolved network topology, whilst at the same time providing a good trade off between throughput, area and power consumption. The latter is vital for a longer battery life on mobile devices. The architecture uses multiple parallel arithmetic units in each processing element (PE). Memory partitioning and data caching are used to minimise the effects of PE pipeline stalling. A first order minimax polynomial approximation scheme, tuned via a genetic algorithm, is used for the activation function generator. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design
The multifrequency Siberian Radioheliograph
The 10-antenna prototype of the multifrequency Siberian radioheliograph is
described. The prototype consists of four parts: antennas with broadband
front-ends, analog back-ends, digital receivers and a correlator. The prototype
antennas are mounted on the outermost stations of the Siberian Solar Radio
Telescope (SSRT) array. A signal from each antenna is transmitted to a workroom
by an analog fiber optical link, laid in an underground tunnel. After mixing,
all signals are digitized and processed by digital receivers before the data
are transmitted to the correlator. The digital receivers and the correlator are
accessible by the LAN. The frequency range of the prototype is from 4 to 8 GHz.
Currently the frequency switching observing mode is used. The prototype data
include both circular polarizations at a number of frequencies given by a list.
This prototype is the first stage of the multifrequency Siberian
radioheliograph development. It is assumed that the radioheliograph will
consist of 96 antennas and will occupy stations of the West-East-South subarray
of the SSRT. The radioheliograph will be fully constructed in autumn of 2012.
We plan to reach the brightness temperature sensitivity about 100 K for the
snapshot image, a spatial resolution up to 13 arcseconds at 8 GHz and
polarization measurement accuracy about a few percent.
First results with the 10-antenna prototype are presented of observations of
solar microwave bursts. The prototype abilities to estimate source size and
locations at different frequencies are discussed
The helium trimer with soft-core potentials
The helium trimer is studied using two- and three-body soft-core potentials.
Realistic helium-helium potentials present an extremely strong short-range
repulsion and support a single, very shallow, bound state. The description of
systems with more than two helium atoms is difficult due to the very large
cancellation between kinetic and potential energy. We analyze the possibility
of describing the three helium system in the ultracold regime using a gaussian
representation of a widely used realistic potential, the LM2M2 interaction.
However, in order to describe correctly the trimer ground state a three-body
force has to be added to the gaussian interaction. With this potential model
the two bound states of the trimer and the low energy scattering helium-dimer
phase shifts obtained with the LM2M2 potential are well reproduced.Comment: 15 pages, 3 figures, submitted to Few-Body System
Strawberry fruit resistance to simulated handling
Harvest operations are currently the main source of mechanical injury of strawberry (Fragaria x ananassa Duch.). Experiments were designed to simulate conditions encountered during commercial handling. Individual fruits were subjected to impact or compression forces with similar energy to determine the sensitivity to mechanical injury. Bruise volume was used as the measurement of injury. Bruise severity increased as a function of impact energy for both impact types. However, dropped fruits had larger bruise volume than fruits submitted to pendulum impactor at the same energy level. Doubling the impact energy (0.040 to 0.083 J) increased bruise volume by 7 times (13 to 91 mm³). Fruits dropped from 380 mm (0.075 J) showed 71% greater bruise volume than those dropped from either 130 mm (0.025 J) or 200 mm (0.040 J). Compressed fruits showed higher bruise volume than other tests. Some cultivars are more susceptible to compression forces than others. 'Sweet Charlie' berries showed bruise volume 40% higher than the others cultivars when subjected to compression. Fruits subjected to impact showed bruise volume lower than the compressed fruits, indicating the possibility to be handled and graded in a packing line.A etapa de colheita é a principal fonte de danos físicos ao morango (Fragaria x ananassa Duch.). Experimentos foram realizados para simular condições encontradas durante manuseio. Frutos foram submetidos individualmente às forças de impacto e compressão em energias similares para determinar sensibilidade dos frutos a danos físicos. Volume da injúria física foi utilizado para mensurar a incidência do dano físico ocorrido. Severidade da lesão aumenta, com incremento da energia, tanto para força de impacto como para compressão. Todavia, frutos submetidos à queda livre demonstraram maiores volumes de danos físicos do que frutos submetidos a danos ocasionados por pendulo no mesmo nível de energia. Dobrando a energia de impacto (0,040 para 0,083 J) ocorreu aumento no volume da injúria em sete vezes (13 para 91 mm³). Frutos submetidos à queda de 380 mm (0,075 J) demonstraram volumes de danos físicos 71% superiores do que aqueles ocasionados em queda de 130 mm (0,025 J) ou 200 mm (0,040 J). Frutos em teste de compressão mostraram maiores volumes de injúrias físicas do que outros testes. Alguns cultivares são mais sensíveis à força de compressão do que outros. Frutos cultivar 'Sweet Charlie' apresentaram volume de injúria 40% superiores do que outros quando submetidos à força de compressão. Morangos submetidos à força de impacto demonstraram volume de injúria inferior do que aqueles comprimidos, indicando a possibilidade dos morangos serem classificados e manuseados em uma linha de beneficiamento
Measurement of the Proton Spin Structure Function g1p with a Pure Hydrogen Target
A measurement of the proton spin structure function g1p(x,Q^2) in
deep-inelastic scattering is presented. The data were taken with the 27.6 GeV
longitudinally polarised positron beam at HERA incident on a longitudinally
polarised pure hydrogen gas target internal to the storage ring. The kinematic
range is 0.021<x<0.85 and 0.8 GeV^2<Q^2<20 GeV^2. The integral
Int_{0.021}^{0.85} g1p(x)dx evaluated at Q0^2 of 2.5 GeV^2 is
0.122+/-0.003(stat.)+/-0.010(syst.).Comment: 7 pages, 3 figures, 1 table, RevTeX late
Observation of a Coherence Length Effect in Exclusive Rho^0 Electroproduction
Exclusive incoherent electroproduction of the rho^0(770) meson from 1H, 2H,
3He, and 14N targets has been studied by the HERMES experiment at squared
four-momentum transfer Q**2>0.4 GeV**2 and positron energy loss nu from 9 to 20
GeV. The ratio of the 14N to 1H cross sections per nucleon, known as the
nuclear transparency, was found to decrease with increasing coherence length of
quark-antiquark fluctuations of the virtual photon. The data provide clear
evidence of the interaction of the quark- antiquark fluctuations with the
nuclear medium.Comment: RevTeX, 5 pages, 3 figure
Double-Spin Asymmetry in the Cross Section for Exclusive rho^0 Production in Lepton-Proton Scattering
Evidence for a positive longitudinal double-spin asymmetry = 0.24
+-0.11 (stat) +-0.02 (syst) in the cross section for exclusive diffractive
rho^0(770) vector meson production in polarised lepton-proton scattering was
observed by the HERMES experiment. The longitudinally polarised 27.56 GeV HERA
positron beam was scattered off a longitudinally polarised pure hydrogen gas
target. The average invariant mass of the photon-proton system has a value of
= 4.9 GeV, while the average negative squared four-momentum of the virtual
photon is = 1.7 GeV^2. The ratio of the present result to the
corresponding spin asymmetry in inclusive deep-inelastic scattering is in
agreement with an early theoretical prediction based on the generalised vector
meson dominance model.Comment: 10 pages, 4 embedded figures, LaTe
Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron
The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2]
for the proton and neutron have been determined from measurements of polarised
cross section asymmetries in deep inelastic scattering of 27.5 GeV
longitudinally polarised positrons from polarised 1H and 3He internal gas
targets. The data were collected in the region above the nucleon resonances in
the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the
proton the contribution to the generalised Gerasimov-Drell-Hearn integral was
found to be substantial and must be included for an accurate determination of
the full integral. Furthermore the data are consistent with a QCD
next-to-leading order fit based on previous deep inelastic scattering data.
Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte
Measurement of the Neutron Spin Structure Function with a Polarized ^3He Target
Results are reported from the HERMES experiment at HERA on a measurement of
the neutron spin structure function in deep inelastic scattering
using 27.5 GeV longitudinally polarized positrons incident on a polarized
He internal gas target. The data cover the kinematic range
and . The integral evaluated at a fixed of is . Assuming Regge behavior at low , the first
moment is .Comment: 4 pages TEX, text available at
http://www.krl.caltech.edu/preprints/OAP.htm
- …