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Abstract. This paper addresses the problem of accelerating large ar-
tificial neural networks (ANN), whose topology and weights can evolve
via the use of a genetic algorithm. The proposed digital hardware ar-
chitecture is capable of processing any evolved network topology, whilst
at the same time providing a good trade off between throughput, area
and power consumption. The latter is vital for a longer battery life on
mobile devices. The architecture uses multiple parallel arithmetic units
in each processing element (PE). Memory partitioning and data caching
are used to minimise the effects of PE pipeline stalling. A first order
minimax polynomial approximation scheme, tuned via a genetic algo-
rithm, is used for the activation function generator. Efficient arithmetic
circuitry, which leverages modified Booth recoding, column compressors
and carry save adders are adopted throughout the design.

1 Introduction

Artificial neural networks (ANN) have found widespread deployment in a broad
spectrum of classification, perception, association and control applications [1].
However, finding an appropriate network topology and an optimal set of weights
represents a difficult multidimensional optimisation problem. Ideally, the topol-
ogy should be as small as possible, but large enough to accurately fit the training
data. Failure to find a suitable configuration will cause poor generalisation abil-
ity with unseen data and/or excessive execution time. One possible solution to
this issue is to use a genetic algorithm to evolve an optimum topology and/or
weights. This approach is also sometimes known as Evolutionary Artificial Neu-
ral Networks (EANN) or Neuroevolution (NE) [2][3]. As well as reducing the
requirement for trial and error design exploration for the ANN, the approach is
more robust at avoiding local minima and has the scope for finding a minimal
topology [2]. A minimal topology is hugely beneficial since fewer neurons and
synaptic connections lead to reduced computation, which in turn means higher
throughput and lower power consumption.
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However, even with minimal topologies, when processing high dimensional
datasets, for example multimedia data, the NE process may not meet system re-
quirements (throughput and/or power consumption). In the case of multimedia
data, poor performance is likely to be a consequence of the unavoidable combina-
tion of a requirement for extremely high throughput for real time processing and
large complex ANN topologies caused by a high number of inputs. The associ-
ated computational complexity is highly undesirable from a real time operation
and low power consumption perspective. This poses considerable problems for
constrained computing platforms (e.g. mobile devices) which suffer from limita-
tions such as low computational power, low memory capacity, short battery life
and strict miniaturisation requirements.

One possible solution to NE complexity issues, is to offload the computational
burden from the host processor to a dedicated hardware accelerator. Although
a general consensus emerging in recent times is that the viability of dedicated
hardware ANN processors are questionable [4]. However, due to the aforemen-
tioned throughput and power consumption issues, ANN hardware acceleration
still provides an attractive and viable solution particularly in the context of
constrained computing platforms. This has motivated us to design an efficient
and flexible hardware ANN accelerator, which is suitable for NE tasks. We have
chosen to investigate the widely used open source Neuro Evolving Augmented
Topologies (NEAT) software library [3]. Our profiling has revealed the compu-
tational burden of the ANN evaluation is suitable for hardware off load, whilst
the genetic algorithm routines, which use moderate computational resources can
reside in software. This scalable co-design methodology combines the reconfigura-
bility of software with the speed of hardware [5]. This also facilitates application
re-usability, where the core could be re-deployed for a number of applications.
It should be noted that hardware acceleration will not be applied to the genetic
algorithm itself.

The rest of this paper is organised as follows: Section 2 details related prior
research in the area. Section 3 discusses NE hardware architecture design chal-
lenges and choices. Section 4 outlines the hardware implementation of the pro-
posed architecture. Section 5 details hardware synthesis results and power con-
sumption estimates. Future work is outlined in Section 6, whilst Section 7 draws
conclusions about the work presented.

2 Related Research

There are many approaches to NE, differing principally in the choice of genome
encoding scheme and the operators chosen for mutation and crossover. NEAT is
an example of a direct encoded node based NE approach. Each genome consists
of a number of link and neuron genes. Fig. 1 shows an example genome and the
principal constituent elements of each gene type. NEAT uses a genome histori-
cal marking scheme (shown as the innovation number in Fig. 1), which avoids
many of the problems associated with other NE approaches. This scheme allows
meaningful topology crossover to occur, and furthermore, it avoids any computa-
tional overhead of topology analysis when producing the valid offspring. Taking
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Fig. 1. Example of an NEAT genome and resultant phenotype

inspiration from biological evolution, NEAT introduces the concept of complex-
ification, whereby processing starts with a minimal topology with no hidden
nodes and each input is connected to an output node. Each successive genera-
tion systemically elaborates the complexity by adding neurons and/or synaptic
connections. This is attractive in the context of our interest in mobile devices
since minimal topologies are favoured, thus reducing computational complexity
for a given problem. During complexification, topology innovation occurs. How-
ever, adding structure will typically reduce the fitness function, since smaller
structures optimise faster. Consequently, there is little opportunity for the new
topology to survive [3]. Again taking inspiration from biological evolution, where
an innovation needs time to reach its potential, NEAT uses a process of specifi-
cation. This allows genomes to compete only against their own species and gives
the new offspring a better chance of survival. The combination of these features,
allows NEAT to outperform other NE approaches [3], and for this reason, we
have chosen it for further investigation.

2.1 ANN Hardware Implementations

There has been considerable research in analog and digital hardware ANN im-
plementations. Analog implementations typically have the benefit of high speed
operation, and smaller area compared to a digital implementation. However an
analog design has a number of drawbacks including susceptibility to compo-
nent process variation, electrical noise and environmental conditions, along with
resolution issues for the weights and activation function. A digital hardware
implementation, on the other hand, does not suffer from these drawbacks, and
furthermore allows ease of design and computational accuracy. For these reasons
we have adopted a digital design approach.

A digital implementation typically stores the network topology and/or synap-
tic weights in memory. These values are then later retrieved and processed in
discrete chunks by the parallel processing elements (PE). This is advantageous
because any network size and potentially any topology can be handled. A PE
usually consists of multiply accumulate circuitry [6] and sometimes depending
on the configuration, an activation function generator. The number of processing
elements implemented is a design space trade off between area, power and per-
formance. This design space extends from a single PE to a PE for each neuron or



even a PE for each synaptic calculation. A discussion of the PE implementation
challenges is given in Section 4.

One of the principal challenges for ANN acceleration using time shared PE’s
is how to get the ANN data from slow, bandwidth limited memories to the high
speed PEs in a fast, bandwidth efficient manner. Systolic array architectures
have been the pervasive choice for bridging this gap [6]. It is well established
that systolic arrays offer many benefits for ANN with regard to using mem-
ory bandwidth effectively by maximising data reuse, in addition to permitting
highly regular PE control logic. However, as will be demonstrated in Section 3,
topologies with sparse synaptic connections considerably reduce the efficiency
of systolic array approaches, in addition to increasing memory requirements.
Furthermore, as sparse topologies result in fewer synaptic calculations, it could
be exploited to reduce power consumption. Despite this, the literature contains
very few hardware implementations, which attempt to exploit topology sparse-
ness The literature rather focuses on dense connectivity neural algorithms.

Our work provides a hardware ANN accelerator extension for NEAT, using
an architecture which is suitable for any evolved topology, as well as having
the ability to exploit sparse connectivity. The intended target of this work is as
an accelerator for mobile devices, consequently the focus is on power efficiency,
rather than ultra high performance acceleration.

3 Proposed Hardware Architecture

Unlike a conventional ANN, an evolved network can have any topology, poten-
tially with a mixture of forward synaptic connections, recurrent synaptic con-
nections and looped current synaptic connections. Furthermore, owing to the
complexification process, NEAT will naturally favour sparse topologies. These
factors have important consequences for the hardware architecture. The effi-
ciency of systolic array architectures is dramatically reduced when operating on
sparse neural topologies. This is because the data flow through the systolic ar-
ray is frequently interrupted and thus the throughput benefit of multiple PEs
is not being achieved. To overcome this, the PE can be either disabled for that
synaptic calculation or have a weight of zero. However both solutions are un-
desirable. Disabling the PE leads to additional control logic for each individual
PE. Whilst storing weights with a zero value leads to increased memory sizes,
which further exacerbates power consumption issues, particularly as memory
power consumption disproportionately increases with size. The systolic array ef-
ficiency is further reduced due to the presence of recurrent synaptic connections.
This causes unpredictable feedback synaptic connections from other neurons,
causing further data flow interruptions. However more importantly, as systolic
array architectures favour layered ANN, where the inputs to each PE layer are
well defined, it is not a trivial matter to dynamically reconfigure the PE inputs
for the evaluation of alternative topologies, which contain recurrent links. This
situation would be necessary for an application where NEAT is evolving in real-
time, such as artificial intelligence for computer gaming [7]. Whilst it is possible
to modify the genetic algorithm so that only forward synaptic connections are
added, this compromises the quality of the evolved ANN solution.
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Fig. 2. NEAT phenotype to hardware memory mapping

These factors have motivated us to explore alternative architectures rather
than a traditional systolic array approach. Examining the NEAT genome data
structures, it is clear that the essential information in the link and neuron genes,
can be mapped easily to hardware memories, as is demonstrated from the simple
ANN in figure 2. Essentially we propose “parsing” through the LINK memory to
retrieve the relevant weights and using the “LINK— FROM” field as the index
to retrieve the output from the appropriate neuron in the NEURON memory.
Once the values are retrieved the multiply accumulate operation is performed.
This operation is repeated for all synapses associated with that neuron, before
the activation function is calculated. The process then repeats for all neurons.

To increase throughput, two PEs operating in parallel are used, as can be
seen from the proposed architecture in Fig. 3. The PE datapath is 64 bits and
each PE has access to the memory (via a memory controller), thus two PEs were
chosen so as to give a good trade off between throughput and bus addressing
complexity. Each PE is equipped with a local “LINK” SRAM. This is loaded
with the incoming synaptic connections for that neuron. To reduce stalling, the
synaptic connections for neuron N + 1 are prefetched, whilst in parallel the
PE processes neuron N. The PE datapath is 64 bits wide because 4 x 16 bit
entries from the local LINK SRAM are retrieved in a burst. Parallel processing
is possible since the “LINK— WEIGHT” values are processed sequentially and
they do not have interdependencies. The decision to use 4 parallel arithmetic
units per PE was chosen as a trade off between throughput, bus width size and
to minimise the complexity of the hierarchical memory system.

Unless a fully connected topology is being evaluated, the 4 “NEURON— ID”
addresses decoded from “LINK— FROM?” will not necessarily be contiguous.
Therefore if a single “NEURON” SRAM is used (such as in Fig. 2), only one
“NEURON?” address could be processed per clock cycle. However to maximise
the performance of the multiple arithmetic units in the PE datapath, valid data
needs to be available on each clock cycle. To overcome this issue, we propose
partitioning the neuron memory into 8 smaller SRAMs, as can be seen in Fig.
3. To further increase the probability that all data units can be retrieved within
one clock cycle, we propose using a data cache to maximise data reuse. The
cache provides backup should two or more data requests occur for the same
“NEURON” SRAM bank. This could occur based on the connectivity of the
topology, in particular if the sparse synapses were modulo 8 apart.
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Fig. 3. Simplified block diagram of the proposed NE hardware accelerator datapath

When the memory control logic receives a request for 8 new values from the
2 PEs, the cache is firstly examined to see if it can fulfil these requests. Should
cache misses occur, the “NEURON—ID” is decoded to indicate the relevant
SRAM bank. If 2 or more requests attempt to access the same SRAM bank, the
data must be retrieved over multiple clock cycles, otherwise all requests can be
handled in one clock cycle. In the worst case scenario, when none of the data is
present in the cache and all requested data is located in the same “NEURON”
SRAM bank, one multiply accumulate operation occurs per clock cycle. On the
other hand, if all the requested data is either in the cache or different Neuron
SRAM banks, 8 multiply accumulates occur per clock cycle. For a fully connected
feed forward ANN, the performance of this proposed system will be similar
if not identical to a systolic array with the same number of arithmetic units,
and we believe, the system will also statistically outperform a systolic array
architecture when processing a mixed forward and recurrent sparse connection
topology. Performing this comparison is targeted as future work.

4 Hardware Implementation

A fundamental digital implementation design decision is what format to use for
the data representation There are at least three popular approaches for digital
ANN - stochastic, fixed point and floating point. Stochastic digital ANN im-
plementations encodes the value of a signal using the probability of a given bit
in a stochastic pulse stream being a logic 1 [8]. This has the benefit that many
common arithmetic operations require very simple logic [9]. Whilst beneficial
from an area perspective, there are issues concerning representation variance.
Furthermore, due to the increased latency from the inherently serial operation,
a higher clock frequency is required to match the throughput from a more par-
allel fixed point implementation. The substantially increased clock frequency is
of considerable concern in the clock tree network from a power consumption
perspective, particularly in deep sub micron technologies. Floating point imple-
mentations on the other hand offer a wide dynamic range suitable for the typical
distribution of ANN weight values, however it has a considerable area overhead
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Fig. 4. Simplified block diagram of the Neuron PE

for arithmetic operators. Consequently we have chosen a fixed point represen-
tation, as we believe it offers a reasonable trade off between area, power and
performance.

The width of the datapath in a fixed point implementation is a vital design
decision. To minimise area and power consumption, the minimum number of bits
should be chosen, which will result in an acceptable error. Reduced fixed-point
precision hardware ANN issues were explored in [10]. It was found that 10 preci-
sion bits were sufficient for multi-layer perceptrons trained via back propagation
[10]. Using fewer precision bits than this will effect the convergence speed, and in
some cases may completely prevent convergence. Related to this, input/output
standardising (sometimes called scaling) is advised in most cases. Standardis-
ing the inputs will results in a smaller integer range. This leads to fewer bits
switching and consequently power savings. For these reasons, we propose using
16 bits in a 6.10 fixed point representation (6 integers bits and 10 fractional
bits) throughout the design, with the input data standardised to a range of
-1 to 1. The 6 integer bits allows net accumulation values to grow to levels,
which maximally exploit the resolution achievable from the proposed activation
function generator. The remainder of this section will discuss the architecture
implementation issues and decisions.

4.1 PE Implementation

The function of the PE is to generate the neuron weighted sum of inputs, this
clearly requires multiply accumulate circuitry. We have also chosen to add the
activation function generator to each PE (see Fig. 4). An alternative approach
is to time share a single activation function generator between multiple PEs.
This is typically the approach adopted when using a systolic array architecture
due to the highly regular processing. For our proposed architecture, control logic
must be designed to ensure only a single PE has control of the activation function
generator at any clock cycle. However as we are currently using only two PEs and
that the area overhead for the activation generator is not considerable (< 2,000
gates), we chose to integrate the activation function logic into the PE.

In a system where the ANN weights are static, canonic signed digit represen-
tation and multiplier-less distributed arithmetic architectures can be employed
in the generation of the weighted sum. However, static weights are clearly not
suitable for NE. Fortunately, owing to the prevalence of the sum of products



operation in signal processing algorithms and matrix arithmetic, there has been
considerable research on efficient hardware implementations. Consequently, we
have chosen a fused multiply add approach as can be seen in Fig. 4 [11]. The
number of partial products has been halved by using modified Booth radix 4
coding and the accumulation step is merged with the addition of the partial
products using a Wallace tree [11]. Furthermore, the generation of the two’s
complement for the modified Booth algorithm uses a simple inversion for the
one’s complement and delays adding the additional one, until the Wallace tree
stage, thereby reducing the critical path. The final sum and carry are then added
using an efficient carry propagate adder.

Each PE has ~ 3KB of local SRAM to store “LINK—FROM/WEIGHT”
data, providing enough storage for the details of over 1000 synaptic connec-
tions. Obviously the amount of memory can be adjusted based upon the timing
constraints of the main memory and connectivity characteristics of a particular
application. The PE control logic, which governs access to the local SRAM and
the control signals for the PE datapath is outlined in Algorithm 1.

Algorithm 1: Neuron PE datapath control flow

1 MEM_SETUP setup;
Load PE SRAM with “LINK—FROM/WEIGHT” data for first “LINK—TQO” neuron;
Regular processing starts once loaded;
In parallel, prefetch “LINK—FROM/WEIGHT” data for the next neuron;
2 LINK_DECODE Stage;
PE requests 4 “LINK—-FROM/WEIGHT” entries from local SRAM;
3 INPUT_FETCH Stage;
Using the 4 retrieved “FROM” addresses, the PE requests these values from the
“NEURON” SRAM memory banks;
The “WEIGHT” values are set up on the inputs to the partial product generation logic;
4 PP_GEN Stage;
With the input values returned from the “NEURON” SRAM banks, the partial product
generation logic is enabled;
5 ACCUM Stage;
Partial products and the previous accumulation are added in the Wallace Tree compressor;
6 ACT-_FN Stage;
If necessary the activation function generator is enabled;
7 WRITE_BACK Stage;
If the activation function is enabled, output is written to memory;

We have recently proposed an efficient hardware architecture for an activa-
tion function generator [12], which improves the approximation error upon prior
research. Our approach uses a minimax polynomial spline approximation, with
a genetic algorithm (GA) leveraged to find the optimum location of the approx-
imating polynomials. The GA typically improved the approximating error by
30% to 60% relative to an even distribution of the approximating polynomials.
Using a spline-based approach has the benefit that multiple activation functions
can be accommodated by merely changing the coefficients of the approximating
polynomial. This is beneficial from an evolutionary perspective and uses minimal
extra hardware to support the additional functions.

4.2 Cache Design

To minimise the area and control logic overhead a direct mapped cache imple-
mentation has been chosen [13]. The selection of the cache size represents an



important design trade off, a larger cache will have fewer cache misses, but will
have a larger area. In our initial design investigation we use 2 parallel PEs each
with 4 arithmetic units, as a result we believe a cache size of 64 blocks will be
appropriate. However, further optimisations should be possible with the cache
size by tailoring it to the statistics of the ANN topology for a particular appli-
cation, e.g. video analysis. Each block consists of 2 elements, the neuron address
and the neuron data. A benefit of using a direct mapped cache is that logic for
a cache block replacement strategy is not required. When a value from the acti-
vation function generator is written back to SRAM, a stall signal is issued and if
necessary the cache is updated. This avoids any potential data mismatches and
the need for additional storage to hold a “block dirty” value in the cache [13].

5 Results

Prior to hardware implementation, we carried out profiling on two classical
ANN/GA problems, the XOR, problem and the double pole balancing problem,
using the NEAT software library. Despite the fact that both evolved topologies
resulted in a small number of neurons, the evaluation of the ANN was the clear
computational hot spot. Additionally, it is fair to assume that as the number of
neurons in the genome increases (for example in multimedia tasks), this compu-
tational hot spot will only worsen.

The hardware design was captured in Verilog HDL and synthesised using
Synopsys Design Compiler using a 90nm TSMC ASIC library. Power consump-
tion was estimated from a gate level netlist with a 1.2 volt voltage source. A
summary of the preliminary synthesis and power results can be seen in table
1. It should be noted that the area figures do not take into account the NEU-
RON and LINK memory storage elements. The design was synthesised using
a 200MHz and a 300MHz clock frequency, these are typical speeds of mobile
microprocessors. As would be expected, the higher clock frequency design has a
marginally larger area. Power estimates were generated using the data derived
from the “Winning” topology for the XOR and double pole balancing tests
generated in software. Owing to the fact that the topologies were small, little
discernible difference was noted in the average power between the two data sets.
We believe these power consumption figures are appropriate for deployment on
a mobile device. Under optimum conditions, our proposed hardware calculates 8
multiply accumulate operations per clock cycle and requires 1 clock cycle for the
calculation of the activation function. This compares favourably with modern
mobile processors, which typically achieve a sustained 1 multiply accumulate
operation per clock cycle. Comparison of results with other ANN implementa-
tions is difficult, as no other approach from the outset attempts to accelerate the
ANN evaluation within neuroevolution and exploit the associated sparse topolo-
gies. Normalisation of results will be necessary to give a fair comparison and this
is targeted as a future work item.

Table 1. Preliminary synthesis results

| [Frequency [MHz]|Area [Gates][Average Power [mW]]

Proposed architecture 200 52,186 42.27
Proposed architecture 300 55,726 69.55
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6 Future Work

The current bottleneck in the design is retrieving the topology from memory
for the multiple PEs. Alternative micro-architectures are currently being inves-
tigated, which could give throughput benefits and improve the scalability of the
architecture. The cache module warrants further investigation, in particular the
effects of different caches sizes, architectures and different input datasets from
NEAT. Before integration with the NEAT software library begins, a compara-
tive power consumption study between fixed point, reduced word length floating
point and stochastic implementations is planned. Benchmarking will be neces-
sary to compare the performance (throughput and power consumption) of the
dedicated hardware core to a software implementation running a general multi-
media processing task such as face detection in video sequences.

7 Conclusions

The computational complexity associated with Neuroevolution for multimedia
applications on mobile devices is highly undesirable from a throughput and power
consumption perspective. This paper has proposed a viable hardware architec-
ture for accelerating the neural network genome calculation. The architecture is
flexible enough to process any ANN topology, whilst still providing a good trade
off between area, power and throughput.
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