114 research outputs found

    The supply of and demand for high-level STEM skills : briefing paper

    Get PDF

    Does quality of care in hip fracture vary by day of admission?

    Get PDF
    Open Access via Springer CompactPeer reviewedPublisher PD

    Investigating different patterns of student engagement with blended learning environments in Australian business education: Implications for design and practice

    Full text link
    This research reports on a diverse student audience engaging in an Australian university’s undergraduate commerce program core unit which was offered across three separate geographic campus locations and online. The research extends upon work undertaken on student engagement in online settings and lies in the domain of blended learning design and practice in the Australian higher education business context. The research adopted a dual-period surveying approach aimed at comparing patterns of student engagement within a major business subject offered in two different trimesters in one academic year. The survey analysis compared student perceptions of engagement with the subject and identified significant variations in patterns of engagement based on key background and demographic factors. Findings, inter alia, are presented across seven major student engagement dimensions as applied to the interplay between online and located/campus learning (i.e. Online Active Learning, Online Social Interaction, Online Collaboration, Online Teaching, Online Assessment, Online Relevance, and Online Contact with Staff). Implications for blended learning design, eLearning and practice in such complex environments involving diverse student audiences are examined

    Fluorinated models of the iron-only hydrogenase: An electrochemical study of the influence of an electron-withdrawing bridge on the proton reduction overpotential and catalyst stability

    Get PDF
    AbstractHere we report the synthesis, electrochemistry and electrocatalytic activity of Fe2(CO)6(ÎŒ-SC6F5)2 (1) where the highly fluorinated bridge is electron-withdrawing, resulting in decreased electron-density at the iron–iron bond. Additionally we discuss the related substituted complexes Fe2(CO)5(PPh3)(ÎŒ-SC6F5)2 (2) and Fe2(CO)4(ÎŒ-Ph2PCH2PPh2)(ÎŒ-SC6F5)2 (3). As none of the complexes could be protonated in their neutral form it was found that proton reduction catalysis in the presence of strong acid (HBF4) took place at the potential of the first reduction of complex 1 and 3, following an EC mechanism. Complex 2 was unstable in the presence of strong acid. For 1 the potential at which proton reduction took place represented a relatively mild reduction potential (−1.15V vs. Fc/Fc+ in acetonitrile) that was comparable to examples of similar complexes in the literature. Complex 1 generated a small concentration of a highly catalytic species after electrochemical reduction, which we attribute to cleavage of the Fe–Fe bond and formation of a mono-nuclear iron species or to Fe–S bond breakage generating a vacant coordination site. The contributions to the catalytic currents were simulated using DigiSim, where it was found that the rate limiting step for 3 was the elimination of H2. It was also found that the highly catalytic species generated after reduction of 1 was more basic than 1− and also that protonation of this species was faster

    Engaging diverse student audiences in contemporary blended learning environments in Australian higher business education: implications for design and practice

    Full text link
    This research reports on a student audience engaging in an Australian university’s undergraduate commerce program core unit that is offered across three separate geographic campus locations and online. The research extends upon work undertaken on student engagement in online settings and lies in the domain of blended learning design and practice in the Australian higher education business context. Findings, inter alia, are presented across six major student engagement dimensions as applied to the interplay between online and located/campus learning (i.e. Online Active Learning, Online Social Interaction, Online Collaboration, Online Teaching, Online Assessment, and Online Contact with Staff). Implications for blended learning design, eLearning and practice in such complex environments are examined

    Reversal of airway hyperresponsiveness by induction of airway mucosal CD4+CD25+ regulatory T cells

    Get PDF
    An important feature of atopic asthma is the T cell–driven late phase reaction involving transient bronchoconstriction followed by development of airways hyperresponsiveness (AHR). Using a unique rat asthma model we recently showed that the onset and duration of the aeroallergen-induced airway mucosal T cell activation response in sensitized rats is determined by the kinetics of functional maturation of resident airway mucosal dendritic cells (AMDCs) mediated by cognate interactions with CD4+ T helper memory cells. The study below extends these investigations to chronic aeroallergen exposure. We demonstrate that prevention of ensuing cycles of T cell activation and resultant AHR during chronic exposure of sensitized rats to allergen aerosols is mediated by CD4+CD25+Foxp3+LAG3+ CTLA+CD45RC+ T cells which appear in the airway mucosa and regional lymph nodes within 24 h of initiation of exposure, and inhibit subsequent Th-mediated upregulation of AMDC functions. These cells exhibit potent regulatory T (T reg) cell activity in both in vivo and ex vivo assay systems. The maintenance of protective T reg activity is absolutely dependent on continuing allergen stimulation, as interruption of exposure leads to waning of T reg activity and reemergence of sensitivity to aeroallergen exposure manifesting as AMDC/T cell upregulation and resurgence of T helper 2 cytokine expression, airways eosinophilia, and AHR

    ADMAP-2: The next-generation Antarctic magnetic anomaly map

    Get PDF
    The Antarctic Digital Magnetic Anomaly Project compiled the first international magnetic anomaly map of the Antarctic region south of 60\ubaS (ADMAP-1) some six years after its 1995 launch (Golynsky et al., 2001; Golynsky et al., 2007; von Frese et al., 2007). This magnetic anomaly compilation provided new insights into the structure and evolution of Antarctica, including its Proterozoic-Archaean cratons, Proterozoic-Palaeozoic orogens, Palaeozoic-Cenozoic magmatic arc systems, continental rift systems and rifted margins, large igneous provinces and the surrounding oceanic gateways. The international working group produced the ADMAP-1 database from more than 1.5 million line-kilometres of terrestrial, airborne, marine and satellite magnetic observations collected during the IGY 1957-58 through 1999. Since the publication of the first magnetic anomaly map, the international geomagnetic community has acquired more than 1.9 million line-km of new airborne and marine data. This implies that the amount of magnetic anomaly data over the Antarctic continent has more than doubled. These new data provide important constraints on the geology of the enigmatic Gamburtsev Subglacial Mountains and Prince Charles Mountains, Wilkes Land, Dronning Maud Land, and other largely unexplored Antarctic areas (Ferraccioli et al., 2011, Aitken et al., 2014 \u327 Mieth & Jokat, 2014, Golynsky et al., 2013). The processing of the recently acquired data involved quality assessments by careful statistical analysis of the crossover errors. All magnetic data used in the ADMAP-2 compilation were delivered as profiles, although several of them were in raw form. Some datasets were decimated or upward continued to altitudes of 4 km or higher with the higher frequency geological signals smoothed out. The line data used for the ADMAP-1 compilation were reprocessed for obvious errors and residual corrugations. The new near-surface magnetic data were corrected for the international geomagnetic reference field and diurnal effects, edited for high-frequency errors, and levelled to minimize line-correlated noise. The magnetic anomaly data collected mainly in the 21-st century clearly cannot be simply stitched together with the previous surveys. Thus, mutual levelling adjustments were required to accommodate overlaps in these surveys. The final compilation merged all the available aeromagnetic and marine grids to create the new composite grid of the Antarctic with minimal mismatch along the boundaries between the datasets. Regional coverage gaps in the composite grid will be filled with anomaly estimates constrained by both the near-surface data and satellite magnetic observations taken mainly from the CHAMP and Swarm missions. Magnetic data compilations are providing tantalizing new views into regional-scale subglacial geology and crustal architecture in interior of East and West Antarctica. The ADMAP-2 map provides a new geophysical foundation to better understand the geological structure and tectonic history of Antarctica and surrounding marine areas. In particular, it will provide improved constraints on the lithospheric transition of Antarctica to its oceanic basins, and thus enable improved interpretation of the geodynamic evolution of the Antarctic lithosphere that was a key component in the assembly and break-up of the Rodinia and Gondwana supercontinents. This work was supported by the Korea Polar Research Institute

    NAA10 polyadenylation signal variants cause syndromic microphthalmia

    Get PDF
    Background A single variant in NAA10 (c.471+2T>A), the gene encoding N-acetyltransferase 10, has been associated with Lenz microphthalmia syndrome. In this study, we aimed to identify causative variants in families with syndromic X-linked microphthalmia.Methods Three families, including 15 affected individuals with syndromic X-linked microphthalmia, underwent analyses including linkage analysis, exome sequencing and targeted gene sequencing. The consequences of two identified variants in NAA10 were evaluated using quantitative PCR and RNAseq.Results Genetic linkage analysis in family 1 supported a candidate region on Xq27-q28, which included NAA10. Exome sequencing identified a hemizygous NAA10 polyadenylation signal (PAS) variant, chrX:153,195,397T>C, c.*43A>G, which segregated with the disease. Targeted sequencing of affected males from families 2 and 3 identified distinct NAA10 PAS variants, chrX:g.153,195,401T>C, c.*39A>G and chrX:g.153,195,400T>C, c.*40A>G. All three variants were absent from gnomAD. Quantitative PCR and RNAseq showed reduced NAA10 mRNA levels and abnormal 3â€Č UTRs in affected individuals. Targeted sequencing of NAA10 in 376 additional affected individuals failed to identify variants in the PAS.Conclusion These data show that PAS variants are the most common variant type in NAA10-associated syndromic microphthalmia, suggesting reduced RNA is the molecular mechanism by which these alterations cause microphthalmia/anophthalmia. We reviewed recognised variants in PAS associated with Mendelian disorders and identified only 23 others, indicating that NAA10 harbours more than 10% of all known PAS variants. We hypothesise that PAS in other genes harbour unrecognised pathogenic variants associated with Mendelian disorders. The systematic interrogation of PAS could improve genetic testing yi

    Insight into nature of iron sulfide surfaces during the electrochemical hydrogen evolution and CO2 reduction reactions

    Get PDF
    Greigite and other iron sulfides are potential cheap, earth-abundant electrocatalysts for the hydrogen evolution reaction (HER), yet little is known about the underlying surface chemistry. Structural and chemical changes to a greigite (Fe3S4) modified electrode were determined at −0.6 V vs. SHE at pH 7, under conditions of the HER. In situ X-ray Absorption Spectroscopy (XAS) was employed at the Fe K-edge to show that iron-sulfur linkages were replaced by iron-oxygen units under these conditions. The resulting material was determined as 60% greigite and 40% iron hydroxide (goethite) with a proposed core-shell structure. A large increase in pH at the electrode surface (to pH 12) is caused by the generation of OH− as a product of the HER. Under these conditions iron sulfide materials are thermodynamically unstable with respect to the hydroxide. In situ IR spectroscopy of the solution near the electrode interface confirmed changes in the phosphate ion speciation consistent with a change in pH from 7 to 12 when −0.6 V vs. SHE is applied. Saturation of the solution with CO2 resulted in inhibition of the hydroxide formation, potentially due to surface adsorption of HCO3−. This study shows that the true nature of the greigite electrode under conditions of the HER is a core-shell greigite-hydroxide material and emphasises the importance of in situ investigation of the catalyst under operation in order to develop true and accurate mechanistic models

    Planetary science and exploration in the deep subsurface: results from the MINAR Program, Boulby Mine, UK

    Get PDF
    The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research – MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining
    • 

    corecore