658 research outputs found

    Testing the limits of human vision with quantum states of light

    Get PDF
    We discuss our progress towards testing whether humans can see single photons, using a single-photon source based on spontaneous parametric downconversion and techniques from quantum optics. We review the existing evidence on single-photon vision, and show why no previous experiments with classical light sources (or otherwise) have truly been able to test it. We describe the heralded single-photon source we have built, which can be used for a definitive single-photon vision test, and discuss the statistical requirements and challenges of such a test. In pilot studies, we demonstrate that a two-alternative forced-choice design and our observer viewing station can measure the perception of very weak visual stimuli (including the weakest flashes of light ever directly tested, with just ~3 photons absorbed). We present two proposed experiments to test quantum effects through the visual system, which could contribute to our understanding of wavefunction collapse and the quantum-classical transition. We also discuss our work on other questions related to visual perception near threshold, including the length and completeness of temporal summation, which we have investigated in detail with a new experimental paradigm. We found that temporal summation continues for at least 650 ms when photons are delivered at a rate of about 30 in 100 ms, and that the completeness of summation may remain efficient over this window. Finally, we present some preliminary results on how 8- to 13-Hz alpha oscillations in the brain (which have complex effects on neural excitability and visual perception) might impact the detection of few-photon stimuli

    Psychological stress, cognitive decline and the development of dementia in amnestic mild cognitive impairment

    Get PDF
    To determine the relationship between psychological stress with cognitive outcomes in a multi-centre longitudinal study of people with amnestic mild cognitive impairment (aMCI) we assessed three parameters of psychological stress (Recent Life Changes Questionnaire (RLCQ); the Perceived Stress Scale (PSS) and salivary cortisol) and their relationship with rates of cognitive decline over an 18 month follow up period and conversion to dementia over a 5.5 year period. In 133 aMCI and 68 cognitively intact participants the PSS score was higher in the aMCI compared with control group but neither the RLCQ scores nor salivary cortisol measures were different between groups. In the aMCI group the RLCQ and the PSS showed no significant association with cognitive function at baseline, cognitive decline or with conversion rates to dementia but high salivary cortisol levels were associated with RLCQ scores and poorer cognitive function at baseline and lower rates of cognitive decline. No relationship was found between salivary cortisol levels and conversion rate to dementia. We conclude that psychological stress as measured by the RLCQ or PSS was not associated with adverse cognitive outcomes in an aMCI population and hypothesise that this may reflect diminished cortisol production to psychological stress as the disease progresses.</p

    Evaluation of the effectiveness and acceptability of intramuscular clozapine injection:illustrative case series

    Get PDF
    Aims and method: A series of eleven patients prescribed intramuscular clozapine at five UK sites is presented. Using routinely collected clinical data, we describe the use, efficacy and safety of this treatment modality. Results: We administered 188 doses of intramuscular clozapine to eight patients. The remaining three patients accepted oral medication. With the exception of minor injection site pain and nodules, side-effects were as expected with oral clozapine, and there were no serious untoward events. Nine patients were successfully established on oral clozapine with significant improvement in their clinical presentations. Clinical implications: Although a novel formulation in the UK, we have shown that intramuscular clozapine can be used safely and effectively when the oral route is initially refused

    Gene-based analysis in HRC imputed genome wide association data identifies three novel genes for Alzheimer's disease.

    Get PDF
    Late onset Alzheimer's disease is the most common form of dementia for which about 30 susceptibility loci have been reported. The aim of the current study is to identify novel genes associated with Alzheimer's disease using the largest up-to-date reference single nucleotide polymorphism (SNP) panel, the most accurate imputation software and a novel gene-based analysis approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 million genotypes from 17,008 Alzheimer's cases and 37,154 controls. In addition to earlier reported genes, we detected three novel gene-wide significant loci PPARGC1A (p = 2.2 × 10-6), RORA (p = 7.4 × 10-7) and ZNF423 (p = 2.1 × 10-6). PPARGC1A and RORA are involved in circadian rhythm; circadian disturbances are one of the earliest symptoms of Alzheimer's disease. PPARGC1A is additionally linked to energy metabolism and the generation of amyloid beta plaques. RORA is involved in a variety of functions apart from circadian rhythm, such as cholesterol metabolism and inflammation. The ZNF423 gene resides in an Alzheimer's disease-specific protein network and is likely involved with centrosomes and DNA damage repair

    A genome-wide association study for late-onset Alzheimer's disease using DNA pooling

    Get PDF
    Background: Late-onset Alzheimer's disease (LOAD) is an age related neurodegenerative disease with a high prevalence that places major demands on healthcare resources in societies with increasingly aged populations. The only extensively replicable genetic risk factor for LOAD is the apolipoprotein E gene. In order to identify additional genetic risk loci we have conducted a genome-wide association (GWA) study in a large LOAD case – control sample, reducing costs through the use of DNA pooling. Methods: DNA samples were collected from 1,082 individuals with LOAD and 1,239 control subjects. Age at onset ranged from 60 to 95 and Controls were matched for age (mean = 76.53 years, SD = 33), gender and ethnicity. Equimolar amounts of each DNA sample were added to either a case or control pool. The pools were genotyped using Illumina HumanHap300 and Illumina Sentrix HumanHap240S arrays testing 561,494 SNPs. 114 of our best hit SNPs from the pooling data were identified and then individually genotyped in the case – control sample used to construct the pools. Results: Highly significant association with LOAD was observed at the APOE locus confirming the validity of the pooled genotyping approach. For 109 SNPs outside the APOE locus, we obtained uncorrected p-values ≤ 0.05 for 74 after individual genotyping. To further test these associations, we added control data from 1400 subjects from the 1958 Birth Cohort with the evidence for association increasing to 3.4 × 10-6 for our strongest finding, rs727153. rs727153 lies 13 kb from the start of transcription of lecithin retinol acyltransferase (phosphatidylcholine – retinol O-acyltransferase, LRAT). Five of seven tag SNPs chosen to cover LRAT showed significant association with LOAD with a SNP in intron 2 of LRAT, showing greatest evidence of association (rs201825, p-value = 6.1 × 10-7). Conclusion: We have validated the pooling method for GWA studies by both identifying the APOE locus and by observing a strong enrichment for significantly associated SNPs. We provide evidence for LRAT as a novel candidate gene for LOAD. LRAT plays a prominent role in the Vitamin A cascade, a system that has been previously implicated in LOAD

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Gene-based analysis in HRC imputed genome wide association data identifies three novel genes for Alzheimer’s disease

    Get PDF
    A novel POLARIS gene-based analysis approach was employed to compute gene-based polygenic risk score (PRS) for all individuals in the latest HRC imputed GERAD (N cases=3332 and N controls=9,832) data using the International Genomics of Alzheimer's Project summary statistics (N cases=13676 and N controls= 27322, excluding GERAD subjects) to identify the SNPs and weight their risk alleles for the PRS score. SNPs were assigned to known, protein coding genes using GENCODE (v19). SNPs are assigned using both 1) no window around the gene and 2) a window of 35kb upstream and 10kb downstream to include transcriptional regulatory elements. The overall association of a gene is determined using a logistic regression model, adjusting for population covariates. Three novel gene wide significant genes were determined for the POLARIS gene-based analysis using a gene window; PPARGC1A, RORA and ZNF423. The ZNF432 gene resides in an Alzheimer's disease (AD) specific protein network which also includes other AD-related genes. The PPARGC1A gene has been linked to energy metabolism and the generation of amyloid beta plaques and the RORA has strong links with genes which are differentially expressed in the hippocampus. We also demonstrate no enrichment for genes in either loss of function intolerant or conserved noncoding sequence regions

    Exome sequencing identifies novel AD-associated genes

    Get PDF
    The genetic component of Alzheimer’s disease (AD) has been mainly assessed using Genome Wide Association Studies (GWAS), which do not capture the risk contributed by rare variants. Here, we compared the gene-based burden of rare damaging variants in exome sequencing data from 32,558 individuals —16,036 AD cases and 16,522 controls— in a two-stage analysis. Next to known genes TREM2, SORL1 and ABCA7, we observed a significant association of rare, predicted damaging variants in ATP8B4 and ABCA1 with AD risk, and a suggestive signal in ADAM10. Next to these genes, the rare variant burden in RIN3, CLU, ZCWPW1 and ACE highlighted these genes as potential driver genes in AD-GWAS loci. Rare damaging variants in these genes, and in particular loss-of-function variants, have a large effect on AD-risk, and they are enriched in early onset AD cases. The newly identified AD-associated genes provide additional evidence for a major role for APP-processing, Aβ-aggregation, lipid metabolism and microglial function in AD
    • …
    corecore