29 research outputs found

    Centering Individual Animals to Improve Research and Citation Practices

    Get PDF
    Modern behavioural scientists have come to acknowledge that individual animals may respond differently to the same stimuli and that the quality of welfare and lived experience can affect behavioural responses. However, much of the foundational research in behavioural science lacked awareness of the effect of both welfare and individuality on data, bringing their results into question. This oversight is rarely addressed when citing seminal works as their findings are considered crucial to our understanding of animal behaviour. Furthermore, more recent research may reflect this lack of awareness by replication of earlier methods – exacerbating the problem. The purpose of this review is threefold. First, we critique seminal papers in animal behaviour as a model for re-examining past experiments, attending to gaps in knowledge or concern about how welfare may have affected results. Second, we propose a means to cite past and future research in a way that is transparent and conscious of the abovementioned problems. Third, we propose a method of transparent reporting for future behaviour research that (i) improves replicability, (ii) accounts for individuality of non-human participants, and (iii) considers the impact of the animals\u27 welfare on the validity of the science. With this combined approach, we aim both to advance the conversation surrounding behaviour scholarship while also serving to drive open engagement in future science

    Dogs Produce Distinctive Play Pants: Confirming Simonet

    Get PDF
    Vocalizations in expressive, nonhuman animals can explain the evolution of human communication. A domain-specific play pant in dogs can signify a comparison to human laughter and can explain the development of interspecies empathy through social contagion. A prescreening survey captured demographic information about the guardian and the dog. Accepted pairs wore wireless microphones, transmitters, and a harness, while a camera captured video. Independent raters analyzed audio and video recordings across training, play and shared rest interactions via an ethogram and RavenLite. There is evidence that dogs produce a play pant. When interacting with their guardians, dogs produced more vocalizations during play than in training or shared rest. A one-way ANOVA resulted in significant differences regarding the presence of vocalizations during the three interactions (F2,39 = 5.897, p = 0.006). While a Tukey post hoc test revealed that fewer play pants were observed during training (0.875 ± 1.30 min, p = 0.018) and shared rest (0.875 ± 1.60 min, p = 0.013) as compared to play interactions (20.63 ± 29.14 min). By validating the canine play pant, our work is among the first to explore the evolution of laughter as a signal between species

    Dogs Produce Distinctive Play Pants: Confirming Simonet et al. (2001)

    Get PDF
    Identifying meaningful vocalizations in nonhuman animals can help explain the evolution of human communications. However, non-speech-like sounds, including laughter equivalents, are not well studied, although they may be meaningful. In this pilot study we investigate whether dogs perform a domain-specific pant during play by capturing vocalizations and behaviors during three interactions: training, play, and rest. Sixteen human and dog dyads participated in a session that included all three interactions in the same order: training, play, rest. During these sessions, each partner wore wireless microphones that transmitted to a receiver and digital recorder, while a standalone digital camera captured video of the interactions. A one-way ANOVA demonstrates that dogs do perform a domain-specific play pant, which was almost completely absent during training and rest. These vocalizations mostly co-occurred with play behaviors (e.g., play bow) or tickling and cuddling. These preliminary findings suggest that a laugh-like play pant is used by dogs during play; future research should explore other interspecific acoustic signals as derived from conspecific signals and having communicative function

    Centring individual animals to improve research and citation practices

    Get PDF
    Modern behavioural scientists have come to acknowledge that individual animals may respond differently to the same stimuli and that the quality of welfare and lived experience can affect behavioural responses. However, much of the foundational research in behavioural science lacked awareness of the effect of both welfare and individuality on data, bringing their results into question. This oversight is rarely addressed when citing seminal works as their findings are considered crucial to our understanding of animal behaviour. Furthermore, more recent research may reflect this lack of awareness by replication of earlier methods – exacerbating the problem. The purpose of this review is threefold. First, we critique seminal papers in animal behaviour as a model for re-examining past experiments, attending to gaps in knowledge or concern about how welfare may have affected results. Second, we propose a means to cite past and future research in a way that is transparent and conscious of the abovementioned problems. Third, we propose a method of transparent reporting for future behaviour research that (i) improves replicability, (ii) accounts for individuality of non-human participants, and (iii) considers the impact of the animals' welfare on the validity of the science. With this combined approach, we aim both to advance the conversation surrounding behaviour scholarship while also serving to drive open engagement in future science

    Bioacoustic Detection of Wolves:Identifying Subspecies and Individuals by Howls

    Get PDF
    SIMPLE SUMMARY: This study evaluates the use of acoustic devices as a method to monitor wolves by analyzing different variables extracted from wolf howls. By analyzing the wolf howls, we focused on identifying individual wolves, subspecies. We analyzed 170 howls from 16 individuals from the three subspecies: Arctic wolves (Canis lupus arctos), Eurasian wolves (C.l. lupus), and Northwestern wolves (C.l. occidentalis). We assessed the potential for individual recognition and recognition of three subspecies: Arctic, Eurasian, and Northwestern wolves. ABSTRACT: Wolves (Canis lupus) are generally monitored by visual observations, camera traps, and DNA traces. In this study, we evaluated acoustic monitoring of wolf howls as a method for monitoring wolves, which may permit detection of wolves across longer distances than that permitted by camera traps. We analyzed acoustic data of wolves’ howls collected from both wild and captive ones. The analysis focused on individual and subspecies recognition. Furthermore, we aimed to determine the usefulness of acoustic monitoring in the field given the limited data for Eurasian wolves. We analyzed 170 howls from 16 individual wolves from 3 subspecies: Arctic (Canis lupus arctos), Eurasian (C. l. lupus), and Northwestern wolves (C. l. occidentalis). Variables from the fundamental frequency (f0) (lowest frequency band of a sound signal) were extracted and used in discriminant analysis, classification matrix, and pairwise post-hoc Hotelling test. The results indicated that Arctic and Eurasian wolves had subspecies identifiable calls, while Northwestern wolves did not, though this sample size was small. Identification on an individual level was successful for all subspecies. Individuals were correctly classified with 80%–100% accuracy, using discriminant function analysis. Our findings suggest acoustic monitoring could be a valuable and cost-effective tool that complements camera traps, by improving long-distance detection of wolves

    Using a new video rating tool to crowd-source analysis of behavioural reaction to stimuli

    Get PDF
    Quantifying the intensity of animals’ reaction to stimuli is notoriously difficult as classic unidimensional measures of responses such as latency or duration of looking can fail to capture the overall strength of behavioural responses. More holistic rating can be useful but have the inherent risks of subjective bias and lack of repeatability. Here, we explored whether crowdsourcing could be used to efficiently and reliably overcome these potential flaws. A total of 396 participants watched online videos of dogs reacting to auditory stimuli and provided 23,248 ratings of the strength of the dogs’ responses from zero (default) to 100 using an online survey form. We found that raters achieved very high inter-rater reliability across multiple datasets (although their responses were affected by their sex, age, and attitude towards animals) and that as few as 10 raters could be used to achieve a reliable result. A linear mixed model applied to PCA components of behaviours discovered that the dogs’ facial expressions and head orientation influenced the strength of behaviour ratings the most. Further linear mixed models showed that that strength of behaviour ratings was moderately correlated to the duration of dogs’ reactions but not to dogs’ reaction latency (from the stimulus onset). This suggests that observers’ ratings captured consistent dimensions of animals’ responses that are not fully represented by more classic unidimensional metrics. Finally, we report that overall participants strongly enjoyed the experience. Thus, we suggest that using crowdsourcing can offer a useful, repeatable tool to assess behavioural intensity in experimental or observational studies where unidimensional coding may miss nuance, or where coding multiple dimensions may be too time-consuming

    Genetic distance from wolves affects family dogs’ reactions towards howls

    Full text link
    Domestication dramatically changes behaviour, including communication, as seen in the case of dogs (Canis familiaris) and wolves (Canis lupus). We tested the hypothesis that domestication may affect an ancient, shared communication form of canids, the howling which seems to have higher individual variation in dogs: the perception and usage of howls may be affected by the genetic relatedness of the breeds to their last common ancestor with wolves (‘root distance’) and by other individual features like age, sex, and reproductive status. We exposed 68 purebred dogs to wolf howl playbacks and recorded their responses. We identified an interaction between root distance and age on the dogs’ vocal and behavioural responses: older dogs from more ancient breeds responded longer with howls and showed more stress behaviours. Our results suggest that domestication impacts vocal behaviour significantly: disintegrating howling, a central, species-specific communication form of canids and gradually eradicating it from dogs’ repertoire

    Effect of pitch range on dogs’ response to conspecific vs. heterospecific distress cries

    Get PDF
    Distress cries are emitted by many mammal species to elicit caregiving attention. Across taxa, these calls tend to share similar acoustic structures, but not necessarily frequency range, raising the question of their interspecific communicative potential. As domestic dogs are highly responsive to human emotional cues and experience stress when hearing human cries, we explore whether their responses to distress cries from human infants and puppies depend upon sharing conspecific frequency range or species-specific call characteristics. We recorded adult dogs’ responses to distress cries from puppies and human babies, emitted from a loudspeaker in a basket. The frequency of the cries was presented in both their natural range and also shifted to match the other species. Crucially, regardless of species origin, calls falling into the dog call-frequency range elicited more attention. Thus, domestic dogs’ responses depended strongly on the frequency range. Females responded both faster and more strongly than males, potentially reflecting asymmetries in parental care investment. Our results suggest that, despite domestication leading to an increased overall responsiveness to human cues, dogs still respond considerably less to calls in the natural human infant range than puppy range. Dogs appear to use a fast but inaccurate decision-making process to determine their response to distress-like vocalisations

    Disentangling canid howls across multiple species and subspecies: Structure in a complex communication channel.

    Get PDF
    Wolves, coyotes, and other canids are members of a diverse genus of top predators of considerable conservation and management interest. Canid howls are long-range communication signals, used both for territorial defence and group cohesion. Previous studies have shown that howls can encode individual and group identity. However, no comprehensive study has investigated the nature of variation in canid howls across the wide range of species. We analysed a database of over 2000 howls recorded from 13 different canid species and subspecies. We applied a quantitative similarity measure to compare the modulation pattern in howls from different populations, and then applied an unsupervised clustering algorithm to group the howls into natural units of distinct howl types. We found that different species and subspecies showed markedly different use of howl types, indicating that howl modulation is not arbitrary, but can be used to distinguish one population from another. We give an example of the conservation importance of these findings by comparing the howls of the critically endangered red wolves to those of sympatric coyotes Canis latrans, with whom red wolves may hybridise, potentially compromising reintroduced red wolf populations. We believe that quantitative cross-species comparisons such as these can provide important understanding of the nature and use of communication in socially cooperative species, as well as support conservation and management of wolf populations.Recording work was approved by the Institutional Animal Care and Use Committee of the University of Tennessee. AK is supported by a Herchel Smith postdoctoral fellowship at the University of Cambridge. Part of this work was carried out while AK was a Postdoctoral Fellow at the National Institute for Mathematical and Biological Synthesis, an Institute sponsored by the National Science Foundation through NSF Award #DBI-1300426, with additional support from The University of Tennessee, Knoxville. BH is thankful to the State Forest Departments of Himachal Pradesh, J&K, and Maharashtra, and to various zoos in India for permitting us to record howls. HRG is grateful to all who helped with the project: the staff at Colchester Zoo; the Wildwood Trust, the Borror Laboratory of Bioacoustics; the British Library; Lupus Laetus; Polish Mammal Research Institute; Tigress Productions; the BBC Natural History Unit; Longleat Safari Park; Tierstimmen Archiv; Wild Sweden; Wolf Park; the Macaulay Sound Library and the UK Wolf Conservation Trust; and Mike Collins, Teresa Palmer, Monty Sloan, Karl-Heinz Frommolt, Yorgos Iliopoulos, Christine Anhalt, Louise Gentle, Richard Yarnell, Victoria Allison Hughes and Susan Parks. BRM thanks the USDA/APHIS/WS/National Wildlife Research Center for supporting his doctoral research and providing access to captive coyotes; recording work was approved by the NWRC IACUC. SW thanks Mariana Olsen for assistance with data collection, and Yellowstone National Park for permission to record.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.beproc.2016.01.00
    corecore