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ABSTRACT 23 

 24 

Wolves, coyotes, and other canids are members of a diverse genus of top predators of considerable 25 

conservation and management interest. Canid howls are long-range communication signals, used both 26 

for territorial defence and group cohesion. Previous studies have shown that howls can encode 27 

individual and group identity. However, no comprehensive study has investigated the nature of 28 

variation in canid howls across the wide range of species. We analysed a database of over 2,000 howls 29 

recorded from 13 different canid species and subspecies. We applied a quantitative similarity measure 30 

to compare the modulation pattern in howls from different populations, and then applied an 31 

unsupervised clustering algorithm to group the howls into natural units of distinct howl types. We 32 

found that different species and subspecies showed markedly different use of howl types, indicating 33 

that howl modulation is not arbitrary, but can be used to distinguish one population from another. We 34 

give an example of the conservation importance of these findings by comparing the howls of the 35 

critically endangered red wolves to those of sympatric coyotes C. latrans, with whom red wolves may 36 

hybridise, potentially compromising reintroduced red wolf populations. We believe that quantitative 37 

cross-species comparisons such as these can provide important understanding of the nature and use of 38 

communication in socially cooperative species, as well as support conservation and management of 39 

wolf populations. 40 

 41 

Keywords: Bioacoustics, Coyote, Dog, Howling, Jackal, Social communication, Wolf  42 



1. INTRODUCTION 43 

 44 

The genus Canis comprises several species and subspecies that share many ecological and 45 

behavioural similarities (Bekoff et al. 1981). Most are apex predators, and although some hunt in 46 

packs and others alone, all species are strongly social, living in groups ranging in size from a handful 47 

of close family members, e.g. coyotes Canis latrans (Bekoff 1977), to large groups of 20 or more 48 

animals, e.g. Ethiopian wolves C. simensis (Sillero-Zubiri & Gottelli 1994). For humans, one of the 49 

most familiar canid behaviours is the howl, a long-range communication channel (i.e. a mode through 50 

which communication can occur) thought to play a role both in territorial advertising and in group 51 

cohesion (Theberge & Falls 1967; Harrington & Mech 1979; Harrington 1987). Howling is most 52 

familiar in grey wolves C. lupus (Harrington et al. 2003), but all species in the genus produce howl-53 

like vocalisations in addition to other, shorter range communication, such as barks, yips, and growls 54 

(Cohen & Fox 1976). These diverse short-range vocalisations are thought to mediate much of canid 55 

social behaviour (Yin & McCowan 2004; Siniscalchi et al. 2008), such as maintaining dominance 56 

relationships, but it has been speculated that howling too plays a role in inter- and intra-group 57 

dynamics (Harrington & Mech 1979; Jaeger et al. 1996; Gese 2001). Support for this hypothesis 58 

includes recent studies showing that wolves recognise the howl vocalisations of familiar individuals, 59 

and that howls show affective changes in response to the removal of individuals from the group 60 

(Mazzini et al. 2013; Palacios et al. 2015). In addition, individual differences in howls have been 61 

found in other canid species, e.g. coyotes (Hallberg 2007), and dingoes (Déaux & Clarke 2013). 62 

Canids of all species pose a number of management and conservation challenges. As apex predators, 63 

canids have a major influence on prey populations, and changes in canid numbers can result in trophic 64 

cascades (Elmhagen & Rushton 2007; Beschta & Ripple 2009). Some species, such as the Ethiopian 65 

wolf (Sillero-Zubiri & Gottelli 1994) and the red wolf C. rufus (Paradiso & Nowak 1972) are 66 

critically endangered, whereas the grey wolf C. lupus is frequently in conflict with human populations 67 

due to livestock depredation (Sillero-Zubiri & Laurenson 2001), and golden jackals C. aureus and 68 

domestic dogs C. familiaris are considered to be significant reservoirs of rabies (Seimenis 2008; 69 

Davlin & VonVille 2012). Management of these issues requires an in-depth understanding of the 70 



behavioural ecology of these species and subspecies, which would appear to be incomplete without an 71 

understanding of the role of long-range vocal communication. In addition, phylogenetic relationships 72 

in the genus as a whole are unclear (Bardeleben et al. 2005; Koepfli et al. 2015), with most 73 

component species being capable of producing fertile hybrids, and there is considerable lack of 74 

agreement over the status of several grey wolf subspecies and populations (Chambers et al. 2012). As 75 

a result, the possible role of vocal behaviour as an isolating factor (or otherwise) between populations 76 

is important for the conservation of genetic diversity in subspecies that, while genetically compatible, 77 

maintain considerable phenotypic adaptation to their local habitats (Chambers et al. 2012). 78 

Partly because of the lack of agreement on the taxonomic status of many canid species and 79 

subspecies, and partly for reasons of simplicity, in this paper we will use the term "species" as a 80 

shorthand for "species and subspecies". 81 

Early studies of canid howling behaviour emphasised qualitative descriptions of howl types 82 

(McCarley 1975; Cohen & Fox 1976; Tembrock 1976; Lehner 1978) and overall acoustic 83 

characteristics, such as mean fundamental frequency and frequency range, as well as modulation 84 

shape measures (Theberge & Falls 1967; Tooze et al. 1990). Multiple variables describing changes in 85 

the frequency and amplitude of the howl over time can be used for individual discrimination, among 86 

which important discriminative variables are the mean, maximum, and coefficient of variation of the 87 

fundamental frequency, and the amplitudes of the various harmonics (Root-Gutteridge et al. 2014a; 88 

Root-Gutteridge et al. 2014b). However, there are reasons to consider that information exists in the 89 

precise frequency modulation of wolf howls, as well as in simpler acoustic characteristics. Firstly, 90 

howls are predominantly narrow-band vocalisations, meaning that most of the acoustic energy is 91 

concentrated at a small range of frequencies at any one time. Further, this well-defined frequency 92 

varies throughout the course of the howl (Figure 1). This "frequency modulation" is known to be used 93 

to encode information in other species with similar vocalisations; particularly bottlenose dolphins 94 

Tursiops truncatus (Janik & Slater 1998; Quick & Janik 2012), in which individual identity can be 95 

reliably extracted from the frequency modulation patterns of whistles (Kershenbaum et al. 2013). 96 

Frequency modulation is an effective encoding technique in terrestrial communication (Wiley & 97 

Richards 1978), and in addition, considerations of signal transmission indicate that long-range 98 



communication in an absorptive environment (e.g. forest) would tend to favour narrow-band 99 

frequency modulation over other encoding modalities (Henry & Lucas 2010). Therefore, we consider 100 

it appropriate to analyse the frequency modulation of canid howls in a similar way to that of dolphin 101 

whistles, to test for characteristic differences between species and populations. 102 

 103 

 104 

Figure 1. Example spectrogram of multiple wolves howling. The x-axis represents time (seconds) and 105 

the y-axis frequency (Hertz). 106 

 107 

A few studies have examined frequency modulation in canid howls, e.g. in coyotes (Hallberg 2007) 108 

and Iberian wolves (Palacios et al. 2007), by defining stereotyped modulation patterns such as, 109 

"rising", "step down", and "warble to flat". However, these arbitrary categories may not be perceived 110 

as distinct units by the focal animal (Kershenbaum et al. 2014), and are potentially subject to selective 111 

bias by researchers focusing on "interesting" spectral patterns. Therefore, a thorough analysis of 112 

frequency modulation must include (a) a quantitative measure of howl similarity (Deecke & Janik 113 

2006), and (b) a quantitative and objective method for grouping howls into distinct howl types, 114 

without relying on subjective interpretation. The latter requirement is particularly acute, as a 115 

quantitative comparison between the vocal behaviours of different populations is problematic if both 116 

repertoires include vocalisations that are qualitatively of a different nature. For example, comparing 117 

the howls of one population to the barks of another would be an unproductive effort. Therefore, an 118 

alternative paradigm is required that takes into account the partitioning of a vocal repertoire into 119 

distinct types, whether arising from functionally different mechanisms (such as howls and barks), or 120 



whether being discrete variations of the same functional mechanism (such as different notes in a bird 121 

song). We propose that, where multiple distinct vocalisation types are used with overlapping 122 

repertoires between populations, the only meaningful way to compare behaviour is to compare the 123 

vocalisation type histograms, rather than compare the individual vocalisations. This approach has also 124 

been carried out in previous studies of birdsong syntax (Jin & Kozhevnikov 2011). In essence, we 125 

interpret the howl type usage histograms as a "fingerprint" of vocal behaviour. 126 

In this work, we define and implement a howl similarity metric, as well as an automated clustering 127 

technique, and analyse a large database of over 2,000 howls from 21 different species of canids. We 128 

classify these howls into distinct types, and compare the relative use of this global repertoire by 129 

different populations, thereby testing for objective differences that distinguish between different 130 

species. Our results show a diversity of different howl types between species and, although we do not 131 

explicitly test for contextual reference in canid howling, we cannot exclude the possibility that 132 

specific howl types may be more common in some behavioural contexts than others. 133 

 134 

 135 

2. METHODS 136 

 137 

We collected a database of canid howling recordings from a wide range of sources. Altogether, we 138 

collected 6,009 howls from 21 distinct species, from 207 sources. Recordings were made both of 139 

captive and wild animals. The number of sources for each species varied from one (dingo C. lupus 140 

dingo or C. familiaris dingo, status unclear, Tibetan wolf C. l. chanco, and others) to 20 (eastern 141 

timber wolf C. l. lycaon). However, we excluded all species with only a single source to avoid 142 

confounding individual distinctiveness with species distinctiveness, providing a dataset with 13 143 

distinct species from 131 sources. Of these, 2,005 howls were considered to be of sufficient quality 144 

for further analysis (no overlapping howls, sufficient signal strength). A breakdown of the recordings 145 

is given in Table 1. For each howl, we traced the frequency modulation using a combination of 146 

manual and automatic extraction tools, using an image-processing ridge tracker (Kershenbaum & 147 



Roch 2013), or by fitting the harmonic peaks to a Lorentzian function (Root-Gutteridge et al. 2014b). 148 

Each analysis was reviewed by both AK and HRG for validation. 149 

 150 

Table 1. Number of howls, and number of recording sources (packs) for each of the species in the 151 

database. 152 

Canid species Common name Reference Number of 

howls 

Number of 

sources 

C. aureus  Golden jackal  28 3 

C. latrans  Coyote  187 4 

C. rufus  

Red wolf (Chambers et al. 

2012) 79 

4 

C. lycaon or C. l. 

lycaon
 
 

Eastern wolf (Chambers et al. 

2012) 510 

20 

C. lupus  Grey wolf    

     C. l. occidentalis  

Mackenzie Valley 

wolf 

(Chambers et al. 

2012) 

127 8 

     C. l. baileyi 

Mexican wolf (Chambers et al. 

2012) 

31 2 

     C. l. arctos
 
 

Arctic wolf (Chambers et al. 

2012) 

26 7 

     C. l. lupus European wolf (Nowak 1995) 65 13 

     C. l. signatus  Iberian wolf (Vilà et al. 1999) 25 3 

     C. l pallipes
 
 Indian wolf (Nowak 1995) 175 7 

     C. l. lupaster 

North African 

wolf 

(Rueness et al. 2011) 33 5 

C. familiaris or C. l. 

familiaris 

Domestic dog 

(as companion 

animal) 

 

375 

53 

C. hallstromi or C. l. 

hallstromi 

New Guinea 

singing dog 

(Koler-Matznick et 

al. 2003) 344 

2 

 153 

 154 

Once the frequency modulation of the howls had been recorded, we compared every howl pairwise to 155 

generate a 2,005 x 2,005 matrix of howl similarity/dissimilarity. We used dynamic time warping 156 

(DTW) (Kruskal 1983) to deliver a quantitative metric of this distance (or dissimilarity) between 157 

every pair of howls. Dynamic time warping has been widely used for comparing frequency data such 158 

as these, particularly in the analysis of dolphin vocalisations (Buck & Tyack 1993; Deecke & Janik 159 

2006; Sayigh et al. 2007). The DTW algorithm allows the time points of each sampled frequency 160 

measurement to vary freely, until an optimum match between the two curves is achieved. The amount 161 



of time-axis distortion necessary to achieve this match is then taken as a measurement of the 162 

quantitative difference between the curves. 163 

Using the dissimilarity matrix obtained by DTW, we applied the k-means unsupervised clustering 164 

algorithm to group the howls into natural clusters based on their similarity. We chose the appropriate 165 

number of clusters using a combination of cluster purity, measured as the mean cluster silhouette 166 

value (Rousseeuw 1987), and stability using a bootstrap technique; repeatedly applying the clustering 167 

to a random subset of 90% of the howls, and measuring similarity of the clustering results using 168 

normalised mutual information (Zhong & Ghosh 2005). 169 

We then examined the usage of each of the different howl types by the 13 different species. As 170 

multiple recordings were obtained from the same individual, or from individuals within the same 171 

pack, potential issues of pseudoreplication arise if howls are directly compared to each other; howls 172 

from the same individual are likely to be more similar to each other than howls from separate 173 

individuals or from different packs. Therefore, rather than analysing howl difference distributions 174 

directly, we examined only differences in the use of different howl types, by calculating the 175 

proportion of howls P(t) that belong to each howl type t, for each species: P(t)=n(t)/N, where n(t) is 176 

the number of howls of type t for a particular species, and N is the total number of howls from that 177 

species. This provides a "fingerprint" of howl type usage, which can then be compared between 178 

species. We calculated the sum of squared differences  between the howl type histograms of 179 

different sources (packs) within each of the 13 species: 180 

∆(𝑎, 𝑏) =∑(𝑃𝑎(𝑡) − 𝑃𝑏(𝑡))
2

𝑇

𝑡

 

where (a,b) is the sum of square differences between sources a and b, Pa(t) and Pb(t) are the 181 

incidences of howl type t in sources a and b respectively, and T is the total number of distinct howl 182 

types for this species. 183 

To test the ability of the howl type usage fingerprint to identify canid species, we measured the sum of 184 

squared differences  between each source (pack) and the mean histograms of each of the 13 species 185 

(with the target source excluded), and recorded which species was most similar to the target source as 186 



indicated by the lowest value of . From this we constructed a confusion matrix showing the 187 

classification of each of the sources, whether to the correct species type or to an incorrect species. 188 

We then used an exact test (Fisher 1925) to estimate the significance of the similarity within a species. 189 

We randomised the howl type distributions 10
5
 times within each species by reordering the incidences 190 

P(t=1...T) randomly, and recalculated '(a,b) to generate a null distribution of sum of squared 191 

differences. We then calculated the proportion of randomised differences ' that were less than the 192 

measured intra-species difference . We also identified the most common howl type in each species 193 

and examined various exemplar howls of this type, as an illustration of what may be a typical howl 194 

type for this species.  195 

Finally, we examined more closely the similarity in the howling behaviour of three sympatric species, 196 

the red wolf, eastern timber wolf, and coyote. Red wolves and coyotes hybridise in the wild, which 197 

poses a threat to reintroduction programs for the critically endangered red wolf (Hinton et al. 2013; 198 

Gese et al. 2015). The eastern timber wolf C. l. lycaon, is considered a subspecies of grey wolf, but 199 

whose taxonomic status is unclear, and is considered to be very closely related to C. rufus, if not 200 

conspecific (Wilson et al. 2000; Koblmuller et al. 2009; Chambers et al. 2012). We tested for 201 

significant differences between the howls of these three species, to determine whether howling 202 

behaviour may potentially provide a form of behavioural isolation, or alternatively encourage 203 

admixing and introgression. We reclustered the DTW data, using only howls from the red wolf, 204 

coyote, and eastern wolf. We then repeated the sum of square difference analysis, comparing the red 205 

wolf-coyote-eastern difference to a null distribution generated by randomising the order of the 206 

histogram of howl types, as well as comparing the histogram fingerprints between sources, as with the 207 

full data set.  208 

 209 

 210 

3. RESULTS 211 

 212 



Applying multidimensional scaling (Cox & Cox 2000) to the full 2,005 x 2,005 matrix of howl 213 

distances found 37 significant dimensions, which were then passed to the k-means clustering 214 

algorithm. Analysis of silhouette values in k-means led to 21 distinct clusters (howl types). Figure 2 215 

shows the howl distance matrix reduced to two dimensions (for visualisation), with cluster assignment 216 

indicated. The clustering appeared robust; 99.3% of all howls were classified with posterior 217 

probability > 0.5. Bootstrapping and re-clustering with 90% of the data produced a normalised mutual 218 

information in comparison to the full data set of 0.760 ± 0.033, i.e. 76% of the cluster assignment 219 

information was retained even when applying the algorithm to a reduced data set. 220 

 221 

 222 

Figure 2. Multidimensional scaling of the 2,005 x 2,005 howl distance matrix into two dimensions. 223 

Each point is a howl, and points closer together are more similar than those further apart. Colours 224 

indicate k-means clustering assignment. The size of each point is for ease of visualisation only. 225 

 226 

Within-species comparisons show that for the eastern timber wolf, the domestic dog, the coyote, the 227 

red wolf, the North African wolf C.l. lupaster, and the Arctic wolf C. l. arctos, howl type usage was 228 

more similar among sources of that species than would be expected by chance (Table 2). This 229 

indicates that in these species, the different sites from which recordings were taken showed a species-230 

specific pattern of howl type usage. 231 



 232 

Table 2. Exact test of similarity of howl type use within each species. The p-value represents the 233 

proportion of randomised trials where the mean difference between sources within a particular species 234 

was less than the actual mean difference within the species. Starred values are significant at 5%. 235 

Species p  Number of sources 

Golden jackal 0.718  3 

Coyote 0.019 * 4 

Red wolf 0.007 * 4 

Eastern Timber wolf 0.014 * 20 

Mackenzie Valley wolf 0.955  8 

Mexican wolf 0.891  2 

Arctic wolf 0.006 * 7 

European wolf 0.237  13 

Iberian wolf 0.935  3 

Indian wolf 0.144  7 

North African wolf <0.001 * 5 

Domestic dog 0.003 * 53 

New Guinea singing dog 0.899  2 

 236 

 237 

The use of each howl type, adjusted for overall howl use frequency, for each of the species show 238 

species-specific fingerprints (Figure 3). The red wolf and coyote share howl type 3 as the most 239 

common; the European C. l. lupus and Iberian C. l. signatus wolves share type 5; and the Mackenzie 240 

Valley C. l. occidentalis, Indian C. l. pallipes, and Mexican C. l. baileyi wolves share type 7. Each 241 

other species has a distinct call type that is most commonly used, relative to its overall usage in the 242 

sample database. Apart from these distinctive howl types, the different species have different 243 

repertoire diversities, with for instance the North African wolf making use of many fewer howl types 244 

than the golden jackal, despite being represented by a similar overall number of sources and howls 245 

(Figure 3). One qualitative trend noticeable from the exemplar howls (chosen as those nearest to the 246 

cluster centroid) is that the smaller species (red wolf, coyote, New Guinea singing dog, domestic dog, 247 

golden jackal) favoured howls that ended with a sharp drop in frequency, whereas larger species 248 

(arctic wolf, eastern timber wolf, European wolf, Mackenzie Valley wolf) used howls with much less 249 

frequency modulation, particularly at the end of the howl (Figure 4), although this may be an artefact 250 

of the lower fundamental frequency used by larger species. 251 



 252 

 253 

Figure 3. Howl use histograms for each of the 13 species, showing the relative use of each of the 21 254 

howl types, adjusted for overall howl type frequency. Red bars show the most commonly distinctive 255 

howl type for each species, with the index number of that type appearing above each histogram. N 256 

indicates the number of howls, and S indicates the number of sources. 257 

 258 

 259 



Figure 4. Three examples of the howls of the particular howl types identified as characteristic of each 260 

species, and represented in Figure 2 by the red bars. Note that the howls within a type are similar in a 261 

dynamic time warping sense, although they may vary somewhat in length.  262 

 263 

 264 

The confusion matrix for the identification of species by source, and the results of the species 265 

identification assessment (Table 3) shows that the coyote, Arctic wolf, and North African wolf all 266 

were well identified by howl usage fingerprint comparison, with identification of the red wolf and 267 

Mackenzie Valley wolf also higher than expected. The New Guinea singing dog C. l. hallstromi, 268 

domestic dog, golden jackal, and North African wolf appeared to form a cluster of similar howl usage 269 

types, and the coyote and red wolf seem to form a separate cluster, with heavy use of type 15 howls 270 

(which only seem to be used by 3 other species, and at very low frequency). 271 

 272 

Table 3a. Classification success by comparing howl type usage histograms as fingerprints. The % 273 

correct column indicates how many recording sources (animal packs) were correctly identified as their 274 

particular species when compared to all other sources in the database. The Best guess column 275 

indicates which species were most frequently identified as the most similar species to the target 276 

source. 277 

Species % correct Best guess 

Golden jackal 33.3 Domestic dog 

Coyote 50 Coyote 

Red wolf 25 Red wolf, Coyote, Domestic dog, Arctic  

Eastern Timber  5 Arctic  

Mackenzie Valley  25 Mackenzie Valley, Indian 

Mexican  0 Red wolf 

Arctic  57.1 Arctic  

European  0 Mackenzie Valley  

Iberian  0 Eastern Timber , European , Mackenzie Valley  

Indian  0 Mackenzie Valley  

North African  40 North African  

Domestic dog 13.2 North African  

New Guinea Singing Dog 0 Domestic dog, North African  

 278 

Table 3b. Confusion matrix showing the number of sources identified as each species type. 279 



  Predicted species 

  RW COY NGSD DD GJ ARC ETIM EUR IBER MV MEX NAFR IND 
A

ct
u

al
 s

p
ec

ie
s 

RW 1 1  1  1        
COY 1 2         1   
NGSD    1        1  
DD 3 3 1 7 4  3 8 3 2 2 9 8 
GJ    2 1         
ARC  1 1   4       1 
ETIM 3     5 1 1 3 4   3 
EUR  2  2  2   2 3 1  1 
IBER       1 1  1    
MV 1   1   1 1  2   2 
MEX 1        1     
NAFR 1  1  1       2  
IND  1  1    1  4    

  280 



 281 

In the reduced analysis of just red wolf, coyote, and eastern timber wolf, there were a total of 776 282 

howls, 510 eastern timber wolf, 187 coyote, and 79 red wolf. Applying multidimensional scaling to 283 

the full 776 x 776 matrix led to 42 significant dimensions, and 11 k-means clusters. All howls (100%) 284 

were classified with posterior probability > 0.5, and bootstrapping followed by reclustering led to a 285 

normalised mutual information of 0.706 ± 0.059. With these data, the red wolf and coyote also 286 

showed significant similarity between the different sources (packs) of the same species (p=0.006 and 287 

p=0.009 respectively), whereas the eastern timber wolf was only marginally significant (p=0.052). 288 

Comparison of the howl type fingerprints showed that the coyote was well identified from most 289 

sources (3 out of 4 sources correctly identified), whereas the red wolf and eastern timber wolf were 290 

often misclassified one as the other, with the red wolf identified as eastern timber wolf in 2 out of 4 291 

sources, and eastern timber wolf as red wolf in 6 out of 20 sources. Red wolves and coyotes share 292 

their most common howl type – type 3 – which is rarely used by timber wolves. Red wolves will often 293 

use howl type 6, which coyotes and timber wolves rarely use, and may be intermediate in 294 

characteristics between coyote (type 3) and timber wolf (type 11) howls, by being lower in frequency 295 

and less frequency-modulated (Figure 5). 296 

 297 

 298 

Figure 5. Examples of coyote howls of type 3 (left), red wolf howls of type 6 (middle) and eastern 299 

timber wolf howls of type 11 (right). Type 6 howls are rarely used by coyotes and eastern timber 300 

wolves, but commonly used by red wolves, and may represent an intermediate form. 301 

 302 

 303 



4. DISCUSSION 304 

 305 

In this study we analysed over 2,000 howls from 13 different species and subspecies belonging to the 306 

genus Canis around the world. Using dynamic time warping as a quantitative measure of howl 307 

dissimilarity, we applied an objective unsupervised clustering algorithm to group the howls into 308 

distinct howl types. The k-means algorithm produced 21 clusters that were stable to bootstrapping, 309 

and that probably represent genuine howl type categories, which we define without the need for 310 

subjective description of howl characteristics. 311 

Each population recorded made different use of these 21 howl types, with many species/subspecies 312 

having a particular howl type that was characteristic of that species/subspecies. Within six of the 313 

species - the eastern timber wolf, the domestic dog, the coyote, the red wolf, the North African wolf, 314 

and the Arctic wolf - a statistically significant similarity existed in their howl type usage. Further, we 315 

found that individual populations of five of the species - coyote, red wolf, Arctic wolf, North African 316 

wolf, and Mackenzie Valley wolf - could be identified using the howl type histograms of the 317 

remaining populations in the data set.  318 

In general, we conclude that canid howling is not an arbitrary signal, but possesses species-specific 319 

information, which may reflect adaptive and/or neutral processes of isolation. 320 

We also performed a more detailed analysis of the howls of three American canids - the red wolf, the 321 

coyote, and the eastern timber wolf - because of the conservation importance of hybridisation between 322 

the critically endangered red wolf and the coyote, as well as continuing disagreement over the 323 

phylogenetic relationship between the red wolf and both the coyote and eastern timber wolf. We 324 

found that coyote and red wolf howl type usage differs significantly, which could be a useful tool for 325 

managing red wolf conservation in the face of competition from sympatric coyotes. Red wolf howling 326 

was similar to that of eastern timber wolves, further complicating the challenge of red wolf 327 

introduction both at the southern end of its range (coyotes) and at the northern end (eastern). In 328 

contrast, red wolves and coyotes share their most common howl type, whereas red wolves will often 329 

use howl type 6, which coyotes and timber wolves almost never use. The intermediate nature of howl 330 

type 6 may provide potential evidence of hybridization between these sepecies. 331 



We note in passing that the smaller species - the red wolf, domestic dog, New Guinea singing dog, 332 

golden jackal - show a greater diversity of howl types than the larger species, and are similar to each 333 

other in their howl type usage. We lack sufficient data to examine this further; however, this 334 

phenomenon could be due to peculiarity of the habitat or niche of these smaller species, or could be 335 

due to a different emphasis on long and short range communication between larger and smaller 336 

species, differences in the vocal production mechanism in different sized species, or a different 337 

emphasis on the social role of howling. 338 

Given the diverse and non-arbitrary nature of howl differences, it is natural to ask whether variations 339 

in howl structure reflect referential or context-specific information. Early studies of wolf 340 

communication pointed out that different vocalisation types (e.g. howl vs. growl, yelp, etc.) were 341 

associated with different behavioural contexts (Cohen & Fox 1976; Tembrock 1976), but stopped 342 

short of suggesting that particular features within howls themselves represented certain arousal states 343 

or environmental contexts (Theberge & Falls 1967; Lehner 1978). More recent studies have begun to 344 

address this question in dingoes (Déaux & Clarke 2013), as well as dogs (Faragó et al. 2014), and 345 

there is some evidence that vocal communication may be used in Canis to coordinate hunting activity 346 

(Muntz & Patterson 2004). Experimentally, it has been shown that howl modulation patterns convey 347 

individual identity, and that animals attend to this information (Palacios et al. 2015). Thus, individual 348 

identity in howl structure is more than just an epiphenomenon, and may be of relevance to 349 

conservation and management programs (Llaneza et al. 2005; Terry et al. 2005; Brennan et al. 2013; 350 

Hansen et al. 2015). Depredation of livestock by coyotes (Knowlton et al. 1999) and wolves (Sillero-351 

Zubiri & Laurenson 2001), in particular, is a cause for concern, but attempts to use vocalisation 352 

playbacks as active deterrents have largely been unsuccessful (Gable 2010). 353 

Our results have shown clear differences in howl structure between populations. Whether populations 354 

in geographical proximity represent separate species, subspecies, or otherwise, it seems clear that 355 

distinct ecotypes exist. The presence of discrete differences in vocal behaviour suggests that 356 

consideration should be given to conservation of populations such as C. rufus and C. lupus lycaon, 357 

even if genetic isolation does not exist. Recent studies have shown multiple examples of dialects not 358 

just in birdsong (Kroodsma 2004), but also in multiple mammalian taxa including rodents 359 



(Slobodchikoff & Coast 1980; Gannon & Lawlor 1989), primates (de la Torre & Snowdon 2009; 360 

Thinh et al. 2011; Meyer et al. 2012), and hyraxes (Kershenbaum et al. 2012). Our study adds to 361 

recent work showing dialectic differences between the howls of wolves in Europe and North America 362 

(Palacios et al. 2007), and fits into an increasingly important trend of understanding the proximal 363 

causes and ultimate significance of dialectic variation (Lameira et al. 2010). 364 

In the case of the critically endangered red wolf, hybridisation with coyotes represents the largest 365 

threat to reintroduced populations (Hinton et al. 2013; Gese et al. 2015). Although howling behaviour 366 

has long been identified in Canis as a mechanism for separating competing populations (Harrington & 367 

Mech 1979; Jaeger et al. 1996; Gese 2001), and vocal behaviour as a mechanism for genetic isolation 368 

in other mammalian taxa (Braune et al. 2008), to our knowledge no studies have addressed the 369 

question whether vocal differences can act to reduce interspecific hybridisation in Canis, or may in 370 

fact be the result of past hybridisation. Coyotes fail to respond to stimuli of wolf howling (Petroelje et 371 

al. 2013); detailed analysis of C. rufus recordings have uncovered non-howl vocalisations that have 372 

not been reported in C. latrans (Schneider & Anderson 2011); and the behavioural responses of 373 

individual wolves vary according to the familiarity of playback howls (Palacios et al. 2015). All these 374 

findings raise the possibility that vocal differences between C. rufus and C. latrans may have 375 

conservation significance. Our work adds to this body of evidence, and should encourage further 376 

investigation of the possibility of behavioural isolation between these populations. 377 

Our study made use of data sources of widely varying size and quality - something inevitable when 378 

integrating recordings from around the world and from species of greatly varying abundance. We 379 

have endeavoured to minimise the statistical artefacts arising from this imbalance, and have been 380 

careful to use the recording source (essentially, a single pack) as the unit of comparison. Some 381 

pseudo-replication may remain, as we cannot ensure that the proportion of howls in each type is 382 

constant for a species. However, in most cases there are insufficient howls from specific individuals to 383 

look at how the pattern varies by individual within species. In addition, it is possible that differences 384 

between populations reflect differences in contextual stimuli. Despite these statistical limitations, we 385 

believe that such broad comparative studies have great value in understanding behaviour across a 386 



wider taxonomic basis than just the species, and we hope that this utility compensates somewhat for 387 

the patchy nature of the data sources. 388 

Automatic clustering using unsupervised algorithms is potentially problematic, as the presence of 389 

computer-identified clusters does not guarantee that these elements have cognitive significance for the 390 

animals involved. Indeed, we have no mechanistic indication that canids perceive and compare howls 391 

in a way similar to our dynamic time warping. To date, what we know is that wolves detect changes in 392 

the fundamental frequency of howls outside their natural range of variability, and changes in the 393 

frequency modulation pattern of howls (Palacios et al. 2015). However we feel confident that DTW 394 

provides a useful comparative tool, because consideration of acoustic propagation would indicate that 395 

frequency modulation of howls is likely an important encoding technique in long-range 396 

communication. Also, we took care to evaluate our clustering results using multiple metrics, and 397 

assessing their stability in the face of bootstrapping, to maximise confidence that the howl type 398 

partitions did, in fact, represent a division of howls into realistic howl types. 399 

This study has involved only correlative analyses, but we believe that this kind of quantitative 400 

categorisation of vocalisation types is necessary before carrying out manipulative and playback 401 

experiments. Being armed with an objective set of howl types, or a methodology for arriving at such a 402 

definition, allows researchers to test the cognitive significance of different howl compositions, and 403 

look for potential behavioural correlates, such as territorial advertising and group cohesion. Any 404 

experimental work with critically endangered species such as the red wolf can be problematic, but we 405 

hope that with a firmer understanding of the vocal behaviour of these animals, it will be possible to 406 

design experiments that will benefit the conservation and management of this and other species. 407 

 408 

 409 

5. CONCLUSIONS 410 

 411 

Howling is a social communication process that is likely of major importance in the overall behaviour 412 

of all canid species. A deeper understanding of their social behaviour is not possible without a 413 

framework within which to understand their vocal behaviour. In particular, quantitative and objective 414 



assessment of howling is highly preferable to subjective interpretation by humans, who lack the 415 

auditory and cognitive instruments of the focal animals. Techniques such as ours providing 416 

quantitative comparisons are important for any future experiments to investigate functionally 417 

referential elements to the canid howl repertoire, which would be a highly significant finding for two 418 

reasons. Firstly, the role of vocal communication in mediating social behaviour in canids may 419 

contribute to understanding the evolution of human language (Seyfarth & Cheney 2014). To our 420 

knowledge, no animal species other than humans possess any form of true language, not even any 421 

form of "proto-language". Therefore, it has been problematic to explain the evolution of human 422 

language as a continual progression from "non-language" to "language", through increasing adaptive 423 

advantage at each step (Tomasello 2008). The presence of complex referential communication in 424 

species that must cooperate to survive was probably a crucial step in the evolution of language 425 

(Jackendoff 1999). Understanding the communication systems of extant social species is essential to 426 

understanding the potential evolutionary trajectories to more complex communication that have 427 

occurred in the past, eventually leading to human linguistic abilities. Although taxonomically distant 428 

from early hominids, wolves and other canids show remarkable parallels with humans in, for example, 429 

social behaviour, intelligence, and vocal communication (Miklósi 2014). Further understanding of 430 

canid social communication could serve as a model system for the evolution of more complex vocal 431 

communication and language. Secondly, canid conservation and management can benefit from 432 

acoustic methods for surveying and assessing population size and health/genetic purity (Llaneza et al. 433 

2005; Brennan et al. 2013), which can be difficult using traditional methods, particularly when snow 434 

is absent (Blanco & Cortés 2011). Active acoustic deterrence has also been suggested as a tool in the 435 

control of animal movements for mitigating wolf conflict with farmers (Gable 2010), but such 436 

techniques cannot be successfully implemented without understanding the message being transmitted. 437 

Therefore, clearer and quantitative techniques for the description of the long-range communication of 438 

canids could have multiple benefits for the conservation and management of these species: through 439 

understanding the processes controlling behavioural isolation, identifying populations by remote 440 

surveying, and active techniques to reduce human-animal conflict. 441 

 442 
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FIGURE CAPTIONS 643 

 644 

Figure 1. Example spectrogram of multiple wolves howling.  645 

 646 

Figure 2. Multidimensional scaling of the 2,005 x 2,005 howl distance matrix into two dimensions. 647 

Each point is a howl, and points closer together are more similar than those further apart. Colours 648 

indicate k-means clustering assignment. The size of each point is for ease of visualisation only. 649 

 650 

Figure 3. Howl use histograms for each of the 13 species, showing the relative use of each of the 21 651 

howl types, adjusted for overall howl type frequency. Red bars show the most commonly distinctive 652 

howl type for each species, with the index number of that type appearing above each histogram. N 653 

indicates the number of howls, and S indicates the number of sources. 654 

 655 

Figure 4. Three examples of the howls of the particular howl types identified as characteristic of each 656 

species, and represented in Figure 2 by the red bars. Note that the howls within a type are similar in a 657 

dynamic time warping sense, although they may vary somewhat in length.  658 

 659 

Figure 5. Examples of coyote howls of type 3 (left), red wolf howls of type 6 (middle) and eastern 660 

timber wolf howls of type 11 (right). Type 6 howls are rarely used by coyotes and eastern timber 661 

wolves, but commonly used by red wolves, and may represent an intermediate form. 662 
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