31 research outputs found

    Investigating the role of higher order chromatin structure and DNA damage complexity on ATM signalling and G2/M checkpoint arrest

    Get PDF
    In response to DNA double stranded breaks (DSBs), mammalian cells have evolved two major repair pathways, DNA Non Homologous End Joining (NHEJ) and Homologous Recombination (HR). The majority of DSB repair in G1 and G2 phase is repaired with fast kinetics by NHEJ in a pathway that involves the core NHEJ factors: Ku, DNA-PKcs, XLF, DNA Ligase IV and XRCC4. A subset of slow repairing DSBs also requires ATM and Artemis (Riballo et al, 2004). This slow component of repair represents DSBs that reside within highly compacted regions of the genome known as heterochromatin (HC) (Goodarzi et al, 2008). ATM functions at HC to mediate relaxation by phosphorylating the HC building factor KAP-1 (Goodarzi et al, 2008). Here I provide evidence that DSBs dependent upon Artemis for their repair also reside within regions of HC. However, unlike ATM, Artemis functions downstream of the HC relaxation process. In response to DSBs, ATM phosphorylates the histone variant H2AX (γH2AX). γH2AX acts as a docking site for the localized recruitment and activation of DNA Damage Response (DDR) proteins. The expansion of γH2AX can spread over megabases of DNA. Here I have shown that highly compacted KAP-1, MeCP2 and DNMT3B enriched chromatin acts as a barrier to IR induced γH2AX expansion. In patient cells deficient for MeCP2 or DNMT3B proteins, such as Rett syndrome (MeCP2 deficient) and Immunodeficiency centromeric-instability facial-anomalies syndrome (DNMT3B deficient), ATM and Chk2 signalling is heightened, which is reflected in a hypersensitive and prolonged G2/M checkpoint arrest. These findings suggest that higher order chromatin complexity is a barrier to ATM signalling to the checkpoint machinery. In the final section of my thesis, I addressed what affect DNA damage complexity exerts on checkpoint arrest. Using exposure to heavy ion irradiation, which induces complex DSBs, I observed larger γH2AX foci and prolonged G2/M checkpoint arrest

    FAK regulates IL-33 expression by controlling chromatin accessibility at c-Jun motifs

    Get PDF
    Focal adhesion kinase (FAK) localizes to focal adhesions and is overexpressed in many cancers. FAK can also translocate to the nucleus, where it binds to, and regulates, several transcription factors, including MBD2, p53 and IL-33, to control gene expression by unknown mechanisms. We have used ATAC-seq to reveal that FAK controls chromatin accessibility at a subset of regulated genes. Integration of ATAC-seq and RNA-seq data showed that FAK-dependent chromatin accessibility is linked to differential gene expression, including of the FAK-regulated cytokine and transcriptional regulator interleukin-33 (Il33), which controls anti-tumor immunity. Analysis of the accessibility peaks on the Il33 gene promoter/enhancer regions revealed sequences for several transcription factors, including ETS and AP-1 motifs, and we show that c-Jun, a component of AP-1, regulates Il33 gene expression by binding to its enhancer in a FAK kinase-dependent manner. This work provides the first demonstration that FAK controls transcription via chromatin accessibility, identifying a novel mechanism by which nuclear FAK regulates biologically important gene expression

    Formate induces a metabolic switch in nucleotide and energy metabolism

    Get PDF
    Formate is a precursor for the de novo synthesis of purine and deoxythymidine nucleotides. Formate also interacts with energy metabolism by promoting the synthesis of adenine nucleotides. Here we use theoretical modelling together with metabolomics analysis to investigate the link between formate, nucleotide and energy metabolism. We uncover that endogenous or exogenous formate induces a metabolic switch from low to high adenine nucleotide levels, increasing the rate of glycolysis and repressing the AMPK activity. Formate also induces an increase in the pyrimidine precursor orotate and the urea cycle intermediate argininosuccinate, in agreement with the ATP-dependent activities of carbamoyl-phosphate and argininosuccinate synthetase. In vivo data for mouse and human cancers confirms the association between increased formate production, nucleotide and energy metabolism. Finally, the in vitro observations are recapitulated in mice following and intraperitoneal injection of formate. We conclude that formate is a potent regulator of purine, pyrimidine and energy metabolism

    Targeting endothelin receptor signalling overcomes heterogeneity driven therapy failure

    Get PDF
    Approaches to prolong responses to BRAF targeting drugs in melanoma patients are challenged by phenotype heterogeneity. Melanomas of a “MITF‐high” phenotype usually respond well to BRAF inhibitor therapy, but these melanomas also contain subpopulations of the de novo resistance “AXL‐high” phenotype. > 50% of melanomas progress with enriched “AXL‐high” populations, and because AXL is linked to de‐differentiation and invasiveness avoiding an “AXL‐high relapse” is desirable. We discovered that phenotype heterogeneity is supported during the response phase of BRAF inhibitor therapy due to MITF‐induced expression of endothelin 1 (EDN1). EDN1 expression is enhanced in tumours of patients on treatment and confers drug resistance through ERK re‐activation in a paracrine manner. Most importantly, EDN1 not only supports MITF‐high populations through the endothelin receptor B (EDNRB), but also AXL‐high populations through EDNRA, making it a master regulator of phenotype heterogeneity. Endothelin receptor antagonists suppress AXL‐high‐expressing cells and sensitize to BRAF inhibition, suggesting that targeting EDN1 signalling could improve BRAF inhibitor responses without selecting for AXL‐high cells

    HNF4A and GATA6 loss reveals therapeutically actionable subtypes in pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) can be divided into transcriptomic subtypes with two broad lineages referred to as classical (pancreatic) and squamous. We find that these two subtypes are driven by distinct metabolic phenotypes. Loss of genes that drive endodermal lineage specification, HNF4A and GATA6, switch metabolic profiles from classical (pancreatic) to predominantly squamous, with glycogen synthase kinase 3 beta (GSK3β) a key regulator of glycolysis. Pharmacological inhibition of GSK3β results in selective sensitivity in the squamous subtype; however, a subset of these squamous patient-derived cell lines (PDCLs) acquires rapid drug tolerance. Using chromatin accessibility maps, we demonstrate that the squamous subtype can be further classified using chromatin accessibility to predict responsiveness and tolerance to GSK3β inhibitors. Our findings demonstrate that distinct patterns of chromatin accessibility can be used to identify patient subgroups that are indistinguishable by gene expression profiles, highlighting the utility of chromatin-based biomarkers for patient selection in the treatment of PDAC

    Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer

    Get PDF
    Background and aims: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress and novel therapeutic response in PC to develop a biomarker driven therapeutic strategy targeting DDR and replication stress in PC. Methods: We interrogated the transcriptome, genome, proteome and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient derived xenografts and human PC organoids. Results: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, co-segregates with response to platinum (P < 0.001) and PARP inhibitor therapy (P < 0.001) in vitro and in vivo. We generated a novel signature of replication stress with which predicts response to ATR (P < 0.018) and WEE1 inhibitor (P < 0.029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < 0.001) but not associated with DDR deficiency. Conclusions: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR proficient PC, and post-platinum therapy

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    New records for Eastern Mosquito Fern (Azolla cristata, Salviniaceae) in Canada

    Get PDF
    We report a cluster of Eastern Mosquito Fern (Azolla cristata, Salviniaceae) populations in five watersheds within a 56-km2 area of Leeds and Grenville County, Ontario. Some of the recently discovered populations were immense, one containing over two million individuals in 2016. These eastern Ontario populations are persistent, having been observed in situ continuously for four years. One population was confirmed after an apparent absence of at least 30 years and another was reported as present (or at least recurring) for approximately 50 years. We observed that Canadian A. cristata is capable, at least experimentally, of overwinter dormancy and subsequent renewal. Azolla cristata in eastern Ontario and western Quebec appears to represent naturally (if sporadically) occurring populations, likely transported from adjacent northern New York populations by migratory waterfowl. These natural occurrences are expected to be more frequent as climate change continues to reduce environmental barriers to the northward establishment of this and other southern taxa

    Visualisation of gH2AX Foci Caused by Heavy Ion Particle Traversal; Distinction between Core Track versus Non- Track Damage

    No full text
    Heavy particle irradiation produces complex DNA double strand breaks (DSBs) which can arise from primary ionisation events within the particle trajectory. Additionally, secondary electrons, termed delta-electrons, which have a range of distributions can create low linear energy transfer (LET) damage within but also distant from the track. DNA damage by delta-electrons distant from the track has not previously been carefully characterised. Using imaging with deconvolution, we show that at 8 hours after exposure to Fe (~200 keV/um) ions, gH2AX foci forming at DSBs within the particle track are large and encompass multiple smaller and closely localised foci, which we designate as clustered gH2AX foci. These foci are repaired with slow kinetics by DNA non-homologous end-joining (NHEJ) in G1 phase with the magnitude of complexity diminishing with time. These clustered foci (containing 10 or more individual foci) represent a signature of DSBs caused by high LET heavy particle radiation. We also identified simple gH2AX foci distant from the track, which resemble those arising after X-ray exposure, which we attribute to low LET delta-electron induced DSBs. They are rapidly repaired by NHEJ. Clustered gH2AX foci induced by heavy particle radiation cause prolonged checkpoint arrest compared to simple gH2AX foci following X-irradiation. However, mitotic entry was observed when ~10 clustered foci remain. Thus, cells can progress into mitosis with multiple clusters of DSBs following the traversal of a heavy particle
    corecore